
CS 710: Complexity Theory 3/09/2010

Lecture 15: Space-Bounded Derandomization

Instructor: Dieter van Melkebeek Scribe: Amanda Hittson and Jake Rosin

Last time we used expanders to reduce the error of probabilistic algorithms by increasing ran-
domness by only a small amount. Today we attempt the opposite: reducing the amount of ran-
domness required with a bounded increase in error. This lecture focuses on derandomization in a
space-bounded setting; in the next lecture we will look at derandomization under time-bounds.

1 Pseudorandom Generators

Definition 1. An ε-PRG (PRG stands for PseudoRandom Generator) for a class A of algorithms
is a collection (Gr)r of deterministic procedures where Gr : {0, 1}ℓ(r) → {0, 1}r such that for all
A ∈ A:

(∀∞x) ‖A(x,Ur) − A(x,Gr(Uℓ(r)))‖1 < 2ε, (1)

where r is the number of random bits A uses on x (and is also the length of the output of Gr), Un

denotes n bits taken from the uniform distribution, ℓ(r) is the seed length (discussed below) and ∀∞

means “for all except finitely many.”

Note that if A is a decision algorithm, Equation 1 is equivalent to:

(∀∞x)
[

|Prρ←Ur
[A(x, ρ) = 1] − Prσ←Uℓ(r)

[A(x,Gr(σ)) = 1]| < ε
]

(2)

There are three important parameters to the above definition.

• Error ε: the deviation from the original randomized algorithm. For example, if the original
algorithm has a probability of error 1

3 and ε = 1
6 , the probability of error for the new algorithm

will be < 1
2 . We want ε to be small, but it suffices that it be “small enough” given the

amplification techniques discussed in previous lectures.

• Seed length ℓ(r): the number of random bits required as input to the pseudorandom generator.
We want this small.

• Complexity: measured in terms of the output length r. We want PRGs with low complexity
so that using them to generate random bits does not increase the total cost of running a
randomized algorithm by too much.

2 Uses of PRGs

Pseudorandom generators can be used to reduce the amount of randomness required to run a
randomized algorithm. As a side effect they can reduce the complexity of a deterministic simulation
of a randomized algorithm, by explicitly computing the probability of acceptance over the set of all
possible PRG seeds ℓ(r) < r. Namely, if G is a 1

6 -PRG for BPTIME(t) computable in DTIME(t′),
then
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BPTIME(t) ⊆ DTIME(2ℓ(t) · (t′(t) + t)) (3)

This is by cycling over all random seeds, running the algorithm on the output of G for each, and
outputting the majority answer. For each seed value, the random string must be generated, taking
t′(t) time, and the algorithm must be run, for an additional t steps. Since this enumerates all
possible seeds and the cumulative error is < 1

2 , a majority vote provides the correct answer.
Similarly, if G is a 1

6 -PRG for BPSPACE(s) computable in DSPACE(s′), then

BPSPACE(s) ⊆ DSPACE(ℓ(2s) + s′(2s) + s) (4)

Given a PRG computable in polynomial time t′ with logarithmic seed length ℓ(t), BPP ⊆
P. Similarly given a PRG with logarithmic seed length that runs in log space, BPL ⊆ L. Such
pseudorandom generators are not known to exist, but this is an approach used to attempt to prove
the containments.

3 Space-Bounded Derandomization

Although we do not yet know how to construct a log space computable PRG with O(log r) seed
length, there are nontrivial constructions approaching this goal. We now present a construction
based on expanders.

Theorem 1. There exists an ε-PRG for BPSPACE(s) with

ℓ(r) = O(log
r

s
· (s + log

1

ε
)) (5)

computable in space O(ℓ(r)).

Corollary 1. There is a 1
6-PRG for BPL with ℓ(r) = O(log2 r) and computable in space O(log2 r),

thus BPL ⊆ DSPACE(log2 n).

This was already known, due to BPL ⊆ NC2, but this theorem shows it can be done with PRGs
as well. 1

The idea behind this proof is dividing a space-bounded randomized computation into 2k phases.
Each phase uses r′ random bits, where r′ = r

2k
. Since the operation of this machine is bounded by

space s, s bits must pass from phase to phase.
By pairing these blocks and using an expander to produce their random bits, we can reduce

the overall level of randomness used by the machine. Consider an expander with degree d and
2r′ vertices. We let G2r′ produce 2r′ pseudorandom bits by choosing a vertex in the expander at
random, then moving to a random neighbor (this is equivalent to selecting an edge at random and
using its endpoints). G2r′ requires a seed length of r′ log d random bits for each block pair; if this
is < 2r′ we have reduced the amount of randomness. This process is diagrammed in Figure 1.

If the expander used is good enough, the output from the modified block pair will not differ
greatly from the output of the original. We rely on the expander mixing lemma to prove this.

Call the distribution of input (output resp.) states to a block pair Sin (Sout) and the random
inputs to the pair ρleft and ρright. There are two distributions to consider for (ρleft,ρright):

1An alternative construction can be used to show that BPL ⊆ DSPACE(log1.5
n) which is the best known bound.
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Figure 1: Dividing computation into blocks, with s bits passing between each block. The original
computation is shown above, and below it is shown with random bits of adjacent blocks coming
from picking adjacent vertices in an expander.
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• Random: U2r′ - the original randomized input.

• Pseudo-random: G2r′(Ur′ , Ulog d) - output from our expander. Note than G2r′(ρ, σ) = (ρ, σ-th
neighbor of ρ in the expander).

The following lemma bounds the difference in output distribution between the two scenarios.

Lemma 1. For any distribution Sin on s bits where λ is the second largest eigenvalue of the
expander,

|Sout(Sin, U2r′) − Sout(Sin, G2r′(Ur′ , Ulog d))|1 ≤ 2s · λ (6)

We soon prove this lemma, but for now we finish the description of the PRG and the proof of
its properties using this lemma. We first want to bound the difference in output distribution of
running the algorithm on purely random bits versus running the algorithm by grouping pairs of
blocks and producing the random bits from the expander. Consider hybrid distributions, where Di

is the distribution formed by using the random distribution for the first 2i blocks, then switching
to the pseudo-random distribution for the remainder. Thus D2k−1 is perfectly random, and D0 is
entirely pseudo-random. The difference between these two distributions is the difference between
the randomized algorithm and our pseudorandom version. From the triangle inequality and our
key lemma we find:

‖D2k−1 − D0‖1 =

∥

∥

∥

∥

∥

∥

2k
−1

∑

i=0

Di − Di−1

∥

∥

∥

∥

∥

∥

1

≤

2k−1
∑

i=1

‖Di − Di−1‖1 ≤ 2k−1 · 2s · λ (7)

This provides a bound on the error introduced by the first step of the derandomization. The
amount of randomness has been reduced from 2r′ for each block pair to r′ + log d, a savings of
roughly r′ as d is constant. This is not a large savings but note that we have reduced our original
block chain to an easier instance of the same problem - one with 2k−1 blocks, each taking r′+ log d

random bits. These new computational blocks can be paired, with the r′+ log d random bits being
generated by the expander as described above. Pairing blocks recursively (as shown in Figure 2)
results in a PRG with the following parameters:

• ε < 2k · 2s · λ. This bound is found by summing (7) over all levels of recursion.

• ℓ(r) = r′ + k · log d. Each reduction requires an additional log d random bits.

• O(ℓ(r)) space complexity. To compute a given output bit of the PRG, we must compute
neighbor relations in a series of expanders. Each of these can be computed in linear space, so
the amount of space used at the topmost level dominates. Hence the total space used by the
PRG is O(ℓ(r)).

As defined above r and r′ are related through r′ = r
2k . The important terms in the parameters

for this PRG are λ and d. Any constant degree expander will have a constant λ, which will
eventually be overshadowed by 2s, resulting in ε > 1. To grow λ along with s we begin with a
constant-degree constant-λ expander and raise it to the t-th power. Allowing multi-edges in this
graph results in a simple expression of the new degree and the second largest eigenvalue in absolute
value, namely λ(Gt) = (λ(G))t, and d(Gt) = (d(G))t. Since we want the error of our PRG to be
less than 2ε we must satisfy

2k+s · λt
0 < 2ε (8)
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Figure 2: Recursively pairing blocks and applying the expander. k expansions cover the entire
computation.
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We rearrange to derive the value of t that must be used, and plug in dt as the degree to determine
the seed length

t = Θ(k + s + log
1

ε
) (9)

ℓ(r) =
r

2k
+ k · Θ(k + s + log

1

ε
) · log d (10)

We know that k ≤ s, since there are at most 2s blocks in our construction and each block uses
at least one random bit. Seed length can, therefore, be defined as

ℓ(r) =
r

2k
+ k · Θ(s + log

1

ε
) (11)

The second term grows with k while the first descends. We have remarked before that setting the
two terms equal and solving for k gives a result that is minimal to within constant factors. We use
k = log r

s
. The seed length becomes

ℓ(r) = O(log
r

s
· (s + log

1

ε
)) (12)

finishing the proof of Theorem 1. All that remains is to prove Lemma 1.

Notice that in our construction each block was treated as a black box. The only connection
between blocks was the s bits representing the state of the machine. The algorithm relies on only
these s bits being transmitted between blocks, but places no limit on the computations performed
by each block individually. This PRG therefore works for any algorithm which can be divided
into 2k blocks with limited communication from block to block, even if each block uses unbounded
space.

4 Next Lecture

In the next lecture we will see a proof of Lemma 1 using the Expander Mixing Lemma. We will also
look at time-bounded derandomization. In a time-bounded setting no non-trivial derandomizations
are known; it is possible (though it would be surprising) that BPP = EXP. However, it is possible
to perform non-trivial derandomizations under certain reasonable assumptions. As we will see, if
there exists a problem in linear exponential time that requires circuits of linear exponential size
then BPP = P. In other words, if non-uniformity doesn’t help to speed up computations, neither
does randomness.
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