
CS 710: Complexity Theory 3/18/2010

Lecture 18: Error-Correcting Codes

Instructor: Dieter van Melkebeek Scribe: Dmitri Svetlov and Matt Elder

In the last lecture, we showed how to construct a pseudorandom generator (PRG) if a class of
“average-hard” languages exist, i.e. if there is some L ∈ E with average-case hardness. Throughout
this lecture and the next, we extend our earlier results by relaxing these average-case hardness
hypotheses and replacing them with worst-case hypotheses, then developing the notion of error-
correcting codes to prove that at length m, the worst-case hardness CL(m) can replace the average-
case hardness HL(m) in such a way that we can construct a language L′ with average-case hardness
very close to the worst-case hardness of any given language L.

1 Motivations

1.1 Circuit Lower Bounds Yield Pseudorandom Generators

Recall from last time the construction of one particular PRG. Specifically, say we are given a
function f : {0, 1}m → {0, 1} and an (m, log r) design S1, . . . , Sr over [ℓ]. Then we construct the
function Gr : {0, 1}ℓ → {0, 1}r with Gr(σ) = (f(σ|S1), . . . , f(σ|Sr)). Each of these designs is of
size m and the intersection of any two distinct sets is at most r. From this follows the security
condition that for a hardness HL(f)(m) ≥ r2, Gr is a (1/r)-PRG for circuits of size at most r.
We argued this by assuming the contrapositive, constructing an appropriate predictor circuit and
finding the hardness. Another important parameter of these G functions is their complexity, which
depends on f (specifically, the complexity of computing each ith element. We would like the
complexity to be linear-exponential in ℓ, in which case (if L(f) ∈ E) we say that Gr is “quick” for
the purpose of derandomization (although for cryptographic purposes this may not be enough).
Some instantiations that we have already seen, e.g. polynomial graphs such that ℓ = O(m2), are
able to achieve this quickness.

To illustrate some of the power of these PRGs, suppose we have a BPP algorithm A for some
problem and a hard language that allows the construction of such a PRG. Then we can solve the
same problem using the following deterministic algorithm A′.

1. Construct the PRG Gr taking a random seed of length ℓ and outputting a pseudorandom
string of length r.

2. For every seed θ ∈ {0, 1}ℓ, run A, replacing its random bits by Gr(θ).

3. Output the majority vote of A on the set of all seeds.

Note that the utility of A′ as an algorithm for the problem that A solves depends on the
complexity of A being small enough that Gr is known to fool it. Thus we can obtain the following
set relations involving BPP by imposing hardness conditions of varying strengths.

1. If there exists a language L ∈ E such that HL(m) ≥ mω(1), then we can build a Gr with
ℓ(r) = rO(1), so BPP ⊆ SUBEXP =

⋂
c>0 DTIME(2nc

). [This is one of the weakest hardness

1

conditions - recall the relationship between the second level of the polytime hierarchy and
size-nk circuits.]

2. If there exists a language L ∈ E such that HL(m) ≥ 2mΩ(1)
, then we can build a Gr with

ℓ(r) = (log r)O(1), i.e. polylog input bits, so BPP ⊆ QP =
⋂

c>0 DTIME(2log cn).

3. If there exists a language L ∈ E such that HL(m) ≥ 2Ω(m), then we can build a Gr with ℓ(r) =
O(log r), so BPP ⊆ P. [This is the strongest hardness condition known - that of a linear-
exponential dependence on m. It requires also a (c log r, log r) design with ℓ = O(c2 log r) to
show that a Gr taking only O(log r) input bits is constructible. We assert without proof that
such a design does exist.]

As an aside, this strongest hardness condition implies the following corollary showing the in-
clusion of BPP in ZPP.

Corollary 1. BPP ⊆ ZPPNP ⊆ ΣP
2 ∩ ΠP

2 .

Proof. Recall that the definition of BPP as the class of languages with poly-time, bounded-error
randomized algorithms. From the third implication above, such algorithms can be derandomized
by functions f : {0, 1}m → {0, 1} in E with hardness H(f) ≥ 2Ω(m).

So for a given function f , consider its characteristic string χf , the length of which is 2m. By a
counting argument on all possible characteristic strings, we know that most functions on m bits will
have the required hardness. Therefore, given a BPP algorithm A, consider the following ZPPNP

algorithm.

1. Pick a random function f : {0, 1}O(log r) → {0, 1}. [Essentially, guess the characteristic
sequence of this presumably hard function. Since it is log r in size, this can be done in O(r2)
time.]

2. Query the NP oracle whether a small (size less than r) circuit computes f . [Again, this is
an NP predicate since f is log r in size. Think of this alternatively as changing the hardness
question to an NP/coNP question: a witness to nonhardness is a short circuit.] If there is a
short circuit for f , halt and return “?.”

3. Otherwise, construct a PRG G built from the hard function f . Then run the derandomized
version of A using G and output its result.

Since, as we’ve noted, most candidates for f are hard, this algorithm halts and fails with low
probability but gives the correct answer in all other cases, so it is a ZPPNP algorithm. Therefore,
every language solvable by an algorithm in BPP can also be solved by one in ZPPNP. Thus,
BPP ⊆ ZPPNP. (Note that this is yet another proof of the membership of BPP in the second level
of the poly-time hierarchy, for those still unconvinced.)

These results apply to a wide variety of computational models, from typical models –like the
time- and space-bounded settings –to extreme models such as constant-depth circuits. [Relate the
first two hardness conditions explored above to these situations.]

We now turn to the converse of these entailments, and show that not only do hard languages
imply the existence of PRGs, but also that PRGs imply the existence of hard languages.

2

1.2 Pseudorandom Generators Yield Circuit Lower Bounds

Theorem 1. If there exists an ǫ-PRG G computable in E that fools circuits of size at most r, then
there exists a language A ∈ E with circuit complexity greater than r.

Proof. The idea behind this proof is that we can use a given PRG G to construct a discerning
language for G, i.e., one that differentiates between the uniform distribution and the distribution
generated by G. Such a language must have a high circuit complexity since G is a PRG.

We note first that if the existence of G is to be non-trivial, then the output of G must be longer
than its input, and ǫ must be less than 1. Thus by looking at only the first ℓ + 1 output bits of G,
we can assume that G takes ℓ to ℓ + 1 bits. Let A be the language {G(α) | α ∈ {0, 1}ℓ}.

Now suppose the circuit C decides A. Then we find that

Pr
σ∈{0,1}ℓ

[C(G(σ)) = 1] = 1, and

Pr
σ∈{0,1}ℓ+1

[C(σ) = 1] ≤
1

2
.

The first result holds by the definition of C; the second holds since G maps its 2ℓ inputs to
no more than 2ℓ distinct outputs. These results taken together show that C differentiates between
the uniform distribution and the distribution generated by G. But since G fools circuits up to size
r, any circuit discerning G must have size greater than r. Since we have chosen an arbitrary C
deciding A, this must be true for all circuits deciding A, so A has circuit complexity greater than
r.

It now remains to show that A ∈ E. So consider the naive algorithm for testing membership of
x ∈ A: compute G(θ) for all seeds θ and compare the outputs to x to see if it is one of them. Since
we assume that G ∈ E and it cycles over 2ℓ seeds, this computation can be done in time 2O(ℓ);
thus, A ∈ E.

We have now shown a stronger, bidirectional relationship: the existence of quick PRGs fooling
circuits of size r is equivalent to the existence of functions in E with circuit complexity greater than
r.

2 Error-Correcting Codes

An error-correcting code (ECC) can be thought of as a function from a set of information words
in some alphabet to a set of codewords in that alphabet such that the codeword, even if some not-
too-large fraction of its bits are flipped, can still be decoded and the information word retrieved.
In other words, ECCs encode information in such a way that a certain amount of error (in data
transmission, say) can be corrected.

We will use such ECCs to express the desired relation discussed above –that between a language
L′ with high average-case circuit complexity to a language L with high worst-case circuit complexity.
Let χL(m) be the characteristic sequence of L on inputs of length m, i.e., the ith bit of χL(m) is 1
exactly if the ith m-bit word is in L. Then, for some m′, let L′ be the language whose characteristic
sequence χL′(m′) on inputs of length m′ is the codeword corresponding to the information word
χL(m) according to some ECC.

3

Our desire is to show that if L is worst-case hard for circuits of size s, then L′ is average-case
hard for circuits of slightly smaller size s′ –alternatively, that HL′(m′) ≃ CL(m), where m′ = θ(m)
(in which case 2m′

= O(2mc

). To prove this, think contrapositively: assume to the contrary that
there is a small circuit that can approximate χL′ in many cases (specifically, more than half of
them). Then, given a decoding algorithm for the ECC, a small circuit for χL(m).

Naturally, not all possible functions from information words to codewords will be able to ac-
complish our precise objective; in particular, any suitable ECC will need to have three specific
properties. We will list them first, to guide our exploration of possible candidates, and show in a
later lecture why they are in fact necessary. Any such ECC must exhibit

1. Robustness: It must be able to handle very high error rates (i.e., a flipping of up to almost
half of the bits). Alternatively, it must correct error rates as high as 1/2 − ǫ for small ǫ.

2. Local Decoding: To obtain any single bit of the information word, only a small portion of the
codeword must be examined. Furthermore, this examination must not take too long.

3. Polytime Encoding: This ensures that if L ∈ E, then L′ ∈ E and m′ = O(m).

We now formally define error-correcting codes and explore some candidates in light of these
prerequisites.

Definition 1. An (N,K,D)-error-correcting code (ECC) is a mapping E : ΣK → ΣN such that
for all distinct x1, x2 ∈ ΣK , E(()x1) and E(()x2) differ in at least D positions (in other words, the
Hamming distance between them is greater than D.)

Let us now express the use of ECCs in these terms. Given an information word x ∈ ΣK , we will
pass it as input to the mapping function and obtain the codeword y = E(x). Then suppose that
uncontrollable events perturb y and cause some bits to flip at random, erasing our memory of y and
producing a received word z that is distinct from y. If fewer than D bit flips occurred between y and
z, then by definition z cannot be a legal codeword, and we can detect that errors were introduced.
Then, if fewer than ⌊(D − 1)/2⌋ flips have occurred, z is closer in Hamming distance to y than to
any other legal codeword, so z can be corrected back to y. [Note that throughout this discussion,
the introducible errors are all bit flips. Naturally, this restricts Σ to {0, 1}. We will discuss later
whether other alphabets are also possible and what implications the choice of alphabet has on the
introduction and correction of errors.]

The parameters of these ECCs that will determine their usefulness for our purpose –and there-
fore the ones we will seek to optimize –are

1. the ratio N/K, which quantifies the redundancy introduced by the encoding;

2. the relative distance D/N between valid codewords; and

3. the complexity of encoding and decoding.

Naturally, we wish to keep the ratio low, so as not to introduce too much redundancy, and
to minimize the complexity of encoding and decoding while achieving a large relative distance,
allowing us to correct many errors. However, the first two parameters are in a sense opposed to one
another: decreasing the redundancy in turns shrinks the relative distance and lessens the number

4

of errors that can be corrected; on the other hand, increasing the relative distance will eventually
require greater redundancy and may also increase the complexity of the encoding and decoding
algorithms beyond reasonable limits.

In our treatment of error-correcting codes, we will focus on the particular class of linear ECCs,
which are mappings from [q]K to [q]N , where [q] denotes the set {0, 1, ..., q} for some prime power
q. We denote such codes with square brackets, using the notation [N,K,D]q .

For these codes, the range of possible codewords is a linear subspace of [q]N and the codeword
bits can be thought of as linear functions of the information bits. The minimum distance between
two codewords is the minimum Hamming weights of the code, analogously to the general case. As
an aside, linear ECCs also have some additional useful properties, such as generator matrices for
them, although we will not discuss them further here.

Let us now consider two simple examples of linear ECCs and investigate whether their param-
eters suffice for our goal.

2.1 The Hadamard Code

In the Hadamard code, a linear ECC with q = 2, a binary information word a of length K is
mapped to the codeword (< a, x >)x∈{0,1}K –in other words, the concatenation of the inner (or,
dot) products of a and x across all binary words x of length K. It is easy to calculate that for this
code, N = 2K , and (by a counting argument) D = 2K−1. Therefore, the relative distance equals

D/N = 1/2 (which is rather good), but the redundancy ratio equals 2K

K
, which is incredibly large.

Now consider a possible decoding process for received words after encoding and perturbation.
Suppose that the total error rate of transmission is no more than 1/4. Let r(x) be the portion of
the received word r at position x. Then we have Pr[r(x) = a ·x] ≥ 3/4+ ǫ. To find the information
bit ai, we can look at two values of x that differ at bit i. Pick x at random, and consider both this
bit and the bit x ⊕ ei. Since both x and x ⊕ ei are chosen uniformly at random, we find that

Pr[r(x) ⊕ r(x ⊕ ei) = aiei] ≥ Pr[r(x) is correct] Pr[r(x ⊕ ei) is correct]

≥ (3/4 + ǫ)2

≥ 1/2 + 2e.

Therefore, with a probability greater than 1/2, we can decode each information bit by examining
just two others. Further, if the error rate of transmission is slightly below 1/4, then all errors can
be corrected, and since no ECC has a relative distance greater than 1/2, this error-correction rate
is arbitrarily close to the best rate theoretically possible.

But nevertheless, the Hadamard code fails to achieve our goal: we can handle error rates only up
to 1/4, and while local decoding is clearly possible, the encoding (and therefore the time required
to encode) is exponentially long in the length of the input.

2.2 The Reed-Solomon Code

To try to address these deficiencies, we consider another code that also happens to have a geometric
inspiration. The Reed-Solomon code maps an information word a ∈ [q]K to the codeword P (x) =
(ΣK

i=1aix
i−1)x∈[q]K . In other words, P is the polynomial of degree K − 1 whose coefficients are the

“digits” of a; i.e., for a = a0a1...aK , P (x) = a0 + a1x + ... + aKxK−1.

5

The key fact upon which this code relies is that distinct polynomials of degree K − 1 can
intersect at no more than K −1 distinct points, so the minimum distance between any two distinct
codewords is at least N − K. We can thus determine that the parameters of the Reed-Solomon
code are N = q, K ≤ q, and the relative distance is at least 1 − K/N .

Note that there is some apparent flexibility in these parameters. Essentially, the Reed-Solomon
makes the inherent trade-off between ration and relative distance “adjustable,” so by choosing
K = 2ǫN , we can handle error rates up to 1/2 − ǫ. Furthermore, since we are dealing with low-
degree polynomials (compared to the length of the information word), both encoding and decoding
can be done efficiently, i.e., in polynomial time. For these reasons, Reed-Solomon codes are used
extensively for many practical applications, such as communication and information retrieval.

However, note that the decoding algorithm is not local –we must still examine essentially the
entire codeword to decode any particular information bit. So while we have made progress toward
finding a single ECC that serves our purposes, more work remains to pin such a code down.

3 Next Lecture

In the next lecture, we will solve the problem of nonlocal decoding with the Reed-Müller code, which
uses multivariant polynomials rather than the univariant polynomials that create Reed-Solomon
codes. We will then tie these various results together to obtain a single error-correcting code that
meets all our specifications and will allow us to complete our relation of hardness in the worst case
to hardness in the average case.

6

