
CS 710: Complexity Theory 3/23/2007

Lecture 19: Worst-Case to Average-Case Reductions

Instructor: Dieter van Melkebeek Scribe: Matt Elder & Brian Rice

Two lectures ago, we constructed a family of “quick” pseudo-random generators, based on the
assumption that there exists a language L ∈ E with high average-case hardness. In this lecture, we
extend these results; we show that the worst-case hardness at length m, CL(m), can be substituted
for the average-case hardness at length m, HL(m). To do this we will further develop the tools we
introduced last time: certain error-correcting codes.

1 Goal

Our goal for this and the next lecture will be the following theorem:

Theorem 1. There are c, d > 0 so that

(∀L ∈ E)(∃L′ ∈ E)HL′(cm) ≥

(

cL(m)

m

)d

.

This says that, given a language L in E with large circuit complexity, there is another language
L′ in E with large average-case hardness. Combining this with our earlier result, this will yield
efficient time-bounded pseudorandom number generators under the assumption that there is a
language in E with large circuit complexity.

The idea of the proof is as follows. From the characteristic function χL(m), we would like to
construct the characteristic function χL′(cm) by applying an error-correcting code. Then, assuming
that we can compute “most” of the values of χL′ , we can decode to find χL.

2 Return to Error-Correcting Codes

Not any error-correcting code (ECC) will do for our purposes. Ideally, the ECC we use would have
the following properties:

• Encoding in polynomial time.

• Efficient and local decoding.

• q = 2 (where q is the number of symbols).

• Handle error rates very close to 1/2.

Recall the two error-correcting codes we considered last time: the Hadamard code and the
Reed-Solomon code. Let us consider how their properties stack up against our requirements.

1

2.1 Hadamard Code

Recall that the Hadamard code, with q = 2, takes a ∈ {0, 1}k and outputs the string (〈a, x〉)x∈{0,1}k ,
where 〈a, x〉 indicates the dot product over GF (2).

This code has the good property that the distance between codewords is relatively high (half the
length of the codeword). Furthermore, the Hadamard code does have local decoding: to compute
the bit ai, we need only compare r(x) and r(x ⊕ ei), where r(x) is the bit of the received word
at position x, and ei is the string of 0’s except for a 1 at position i. If both of these are correct
(transmitted without error) then they if and only if ai = 1. By choosing several such x and taking
majority vote, we correctly decode ai with high probability.

On the other hand, the Hadamard code is far too inefficient for our purposes. The length of the
codeword (and hence time to encode) is exponential in the length of the message, not polynomial
as required.

2.2 Reed-Solomon Code

Recall that the Reed-Solomon Code transforms the information word a ∈ GF (q)K to the codeword
(P (x))x∈GF (q), where P is the polynomial of degree K − 1 whose coefficients are the “digits” of a

(i.e. a = (a0, a1, ..., aK−1) and P (x) = a0 + a1x + ...aK−1x
K−1). This code relies on the fact that

different polynomials of degree K − 1 can have at most K − 1 points of intersection, meaning the
distance between distinct codewords is at least N − K.

With an appropriate choice of N and K, the Reed-Solomon code is very efficient. It is fairly
easy to encode (certainly in polynomial time), and the distance between codewords is very large, so
the code can handle error rates close to 1/2. However, this code is not satisfactory for our purposes.
The important problem is that this code cannot be decoded locally: we must examine essentially
the entire received word to retrieve one character of the message.

3 Reed-Müller Code

The Reed-Solomon code fails for our purposes because the decoding procedure is inherently non-
local. The Reed-Müller code corrects this problem by using multi-variate rather than univariate
polynomials. We will see in a moment how to take advantage of multi-variate polynomials to
perform local decoding. First, consider the representation of the message. In the Reed-Solomon
code, we represent the message as the coefficients for a polynomial. For the Reed-Müller code,
we will think of the message as an m-variate polynomial with individual degrees less than s. We
could use a similar encoding as was used for the Reed-Solomon code: interpret the message as
the coefficients of the polynomial. However, this encoding inherently leads to non-local decoding
- to recover the coefficients we need to recover the entire polynomial, meaning we would need to
examine a large fraction of the received word bits.

We use a different encoding that will allow local decoding. The information word a is composed
of sm elements from GF (q). We view each element as the evaluation of some m-variate polynomial
P on a particular element of GF (q)m taken from a sub-cube of size sm. This is illustrated in Figure
1. Encoding is performed by determining the polynomial P from the points given in the message,
and then evaluating P on all possible m-tuples over GF (q)m.

It is immediate that for the Reed-Müller code, K = sm and N = qm. By the Schwartz-Zippel
Lemma, the code achieves relative distance d = 1 − ms

q
.

2

s q

Figure 1: An illustration of the scheme used for the Reed-Müller code for the case of m = 3. The
message gives the evaluation of a polynomial on a sub-cube of size sm, and the encoding is the
evaluation of an interpolating polynomial on the entire space.

3.1 Encoding

We have specified the correct encoding of the Reed-Müller code above, but it is not immediate that
this can be done efficiently: we need to determine the unique polynomial P with each individual
degree less than s that interpolates a given set of values on a sub-cube of size sm. Let ai ∈ GF (q)
denote the ith value of a. Let φ be some invertible map between the integers 1 through sm and a
subcube of GF (q)m of size sm. We define want to determine P so that P (φ(i)) = ai.

We show that we can construct P by building polynomials that interpolate each element of the
sub-cube. The polynomial δc is defined for an m-variable constant vector c, which is inside the
sm-subcube. We want δc(c) = 1 and δc(x) = 0 for all other values x inside the sm-subcube. We
can construct δc as follows:

δc(x) = α

m
∏

i=1

∏

j 6=ci

0≤j<s

(xi − j).

Here, α is just a normalization constant; we use this so that δc(c) = 1. For all values of x 6= c in
the sm-subcube, there is some index i such that xi 6= ci. By the construction, there must then be a
multiplicand in δc(x) of the form xi − xi, so δc(x) = 0. Note that the degree of δc in each variable
is less than s.

So, we can compose the desired polynomial P as a linear combination of the polynomials δc:

P (x) =
sm

∑

i=1

aiδφ(i)(x).

As the degree of each δc in each variable is less than s, the same is true of P . We conclude that
this formula determines the unique such polynomial interpolating the given points.

Once we have constructed P from the information word a, we produce the codeword b by
concatenating the value of P (x) for all values of x in GF (q)m. As an aside, we point out that
the the codeword contains an exact copy of the message a (the portion of the codeword where
we evaluate P on the elements of the sub-cube that were used to construct P). Codes with this
property are called systematic codes.

3

3.2 Decoding

To decode, we could query the received word at every position and construct a polynomial that
differs from the received word in the fewest number of positions. We do not do this as our goal is
to perform as few queries of the received word as possible. Recall that each element of the message
corresponds to the evaluation of P on some point in the sm-subcube. The basic idea is to look at
P restricted to a random line through the point corresponding the position in the message we want
to decode. P restricted to this line is a univariate polynomial, so if the received word agrees with
P on a large fraction of the points on the line, we can recover the values of P on the line (including
the point we are interested in). The construction is illustrated in Figure 2.

φ(i) + ty

φ(i)

s
q

Figure 2: Reed-Müller decoding. To determine ai = P (φ(i)), construct a line φ(i) + ty through
φ(i) for a randomly chosen y, then determine the univariate polynomial P (φ(i) + ty). For t = 0,
this gives P (φ(i)).

We now formalize the decoding procedure. Suppose r is our received word. Let r(x) denote the
value of r in the position corresponding to x ∈ GF (q)m; and let P (x) denote the analogous position
in the correct codeword. To retrieve the ith digit of the message a, we would like to determine the
value of P (φ(i)) = ai. To determine P (φ(i)), we pick a random point y ∈ GF (q)m, select ms
distinct values for t 6= 0, and examine r(φ(i) + ty) at each one. We know that P (φ(i) + ty) is a
polynomial in t of degree at most ms. Suppose P = r for the values we have chosen. In this case,
we can determine the polynomial P (φ(i) + ty), and evaluate it at t = 0 to get P (φ(i)) = ai.

So if P = r on the chosen points, we recover the correct value. We now bound the probability
that P 6= r for at least one of the chosen points. Suppose r(x) differs from P (x) in at most γ
fraction of locations. As each point we query r on is uniformly distributed, the probability that
r(x) 6= P (x) for each query x is at most γ, by our above assumption. So, the probability that
r(φ(i) + ty) 6= P (φ(i) + ty) for some selected value of t among the m(s− 1) values that we selected
is at most (ms)γ. If we assume that γ ≤ 1

3ms
, the probability we output an incorrect value for ai is

at most 1/3. Furthermore, we can repeat the above process for different random values of y, and
then take the majority vote for the value of ai. In this way, we can make this decoding algorithm
work with probability 1 − ǫ for ǫ as small as we like.

The above analysis only works provided the error rate in transmission is no greater than
1/(3ms). Essentially the same techniques can be used with higher error rates, but we stuck to
lower error rates in the above to keep the analysis simple.

We also point out that the decoding procedure is randomized, whereas we often want to have

4

a deterministic decoding procedure. Since we will have circuits perform the decoding procedure in
our worst-case to average-case reduction, requiring randomness will not be a problem - we will be
able to hardwire “good” random bits into the circuits.

3.3 Parameters

We would like to set the parameters of this code in such a way to meet the three conditions we
originally set out to meet. We already have that N = qm, K = sm, and d = 1 − sm

q
. We want

to choose s, m, and q, so that: (a) d is close to 1, meaning we can correct even with error rates
close to 1

2 , (b) ms is small, so the number of queries in the decoding procedure is small, and (c)

N = KO(1), so the encoding is polynomially long (and thus also polynomial-time computable).
We point out that for d to be positive, we need sm < q. Then (c) implies that

KO(1) ≥ N = qm ≥ (ms)m = K · mm,

so mm ≤ KO(1). Taking logarithms, we have that m log m ≤ O(log K), and therefore m ≤
O(log K

log log K
).

(b) combined with the fact that K = sm means that making m as small as possible will minimize
sm, so we set m = Θ(log K

log log K
). As K = sm, this means that s = Θ(log K).

We have set the parameters so that we get a code with polynomial stretch and requiring only
a poly-logarithmic number of queries to locally decode. This is almost good enough for what we
want to do. There are two issues that still need to be dealt with: the code is not binary, and (we
will see) the distance is not good enough.

4 Concatenation of Reed-Müller and Hadamard

To deal with the problem of the Reed-Müller code being a non-binary code, we concatenate it with
the Hadamard code. If we start with an [N,K, d] code over an alphabet of q elements, concatenation
with the Hadamard code yields a binary [Nq,K log q, d

2] code. This concatenated code has all of
the properties that we want except that the distance is not good enough. Recall that we wanted
to be able to handle error rates close to 1

2 . To do this with unique decoding, we need the distance
d
2 to be close to 1. This is not possible for any code, since d ≤ 1.

In the next lecture, we will see how to get around this problem by relaxing the requirements of
uniquely decoding the correct message. The relaxed notion is called list-decoding, where we require
the decoding procedure to output all messages whose encoding is close to the received word. In
the next lecture we will see a list-decoding procedure for the Hadamard code, and give an idea of a
list-decoding procedure for the concatenated Reed-Müller/Hadamard code that satisfies all of our
original goals.

5

