
CS 710: Complexity Theory 4/13/2010

Lecture 23: Alternation vs. Counting

Instructor: Dieter van Melkebeek Scribe: Jeff Kinne & Mushfeq Khan

We introduced counting complexity classes in the previous lecture and gave some basic prop-
erties, including the relation between counting and decision classes. In this lecture we give results
relating counting to the polynomial hierarchy. The first result shows that any #P function can be
approximated in the second level of the polynomial hierarchy, giving evidence that approximate
counting is not much more difficult than deciding. The second result, which we state and partially
prove in this lecture, gives evidence that exact counting is more difficult by showing that the entire
polynomial hierarchy can be decided with a single query to a #P function.

The proofs of both results make use of families of universal hash functions. These are small
function families that behave in certain respects as if they were random, allowing efficient random
sampling. We first introduce universal hash functions, and then prove the two main results.

1 Universal Families of Hash Functions

A universal family of hash functions is a collection of functions. We wish the set of functions to
be of small size while still behaving similarly to the set of all functions when we pick a member at
random. This is made possible by choosing the appropriate notion of “behaving similarly”.

Definition 1. H = {h : {0, 1}n → {0, 1}m} is a universal family of hash functions if the following
holds. For all x1 6= x2 ∈ {0, 1}n and y1, y2 ∈ {0, 1}m,

Pr
h∈H

[h(x1) = y1 ∧ h(x2) = y2] =
1

22m

where h is chosen uniformly at random from the functions in H.

Notice that the probability is the same as if we had picked h from all possible functions. If we fix
x1 and x2 and pick h ∈ H at random, then the random variables h(x1) and h(x2) are independent.
So we can think of universal hash functions as giving us the ability to produce uniform pairwise
independent samples. The definition above can be generalized to define k-universal hash functions
that produce k-wise independent samples.

We will make use of a few immediate consequences of the above definition.

• For any x1 6= x2 ∈ {0, 1}n Prh∈H[h(x1) = h(x2)] = 1
2m .

• For any x ∈ {0, 1}n and y ∈ {0, 1}m, Prh∈H[h(x) = y] = 1
2m .

To be able to efficiently sample from H, we would like the family to be small. There are a
number of ways to achieve this; we give two.

Example: Let H = {h(x)|h(x) = Tx + v where T is some m× n Toeplitz matrix over GF(2) and v
is some m × 1 vector over GF(2)}. A Toeplitz matrix is one where entries along each diagonal are
all the same. So it takes (m + n − 1) + m = 2m + n − 1 bits to specify an element of H, whereas
the specification of a random function from all possible functions requires m2n bits to specify the

1

truth table. If the correctness of a randomized algorithm only relies on pairwise independence, this
universal family of hash functions can be used as a O(log r) length seed pseudorandom generator
to derandomize the algorithm.

We leave it as an exercise to prove that H satisfies Definition 1. ⊠

Example: Another example is the set of affine functions over a finite field. We leave it as an exercise
to prove that H = {h(x) = (ax+b (mod 2m)|a, b ∈ GF (2m)} is a universal family of hash functions
from {0, 1}n to {0, 1}m for all m ≤ n, where by (mod 2m) we mean that we are working over the
field GF (2m) (correctness follows from the fact that GF (2m) is a field). ⊠

1.1 Applications

Before delving into the main results of this lecture, we give some intuition of how universal families
of hash functions will be useful. Let S ⊆ {0, 1}n. Then intuitively, we expect that if we pick
2m ≈ |S|, a randomly chosen hash function from n bits to m bits will map S to {0, 1}m with few
collisions. That is, for h ∈U H, with high probability h(S) ≈ {0, 1}m. In the first application,
we wish to determine the size of S where S is an NP witness set. We will make use of the above
intuition to derive a Σp

2 predicate that allows us to approximately determine the size of S. In a
later application, we wish to use randomness to reduce a satisfiable formula to another one that is
uniquely satisfiable (satisfiable by only one assignment). We will use the above intuition to show
that by choosing m appropriately and picking h at random, there will with high probability be a
unique satisfying assignment that hashes to 0m.

2 Approximate Counting

In this section we prove that any #P function can be approximated to within a polynomial factor
with an oracle for the second level of the polynomial hierarchy.

Theorem 1. For any f ∈ #P and for all a > 0, there is a function g computable in polynomial
time with oracle access to a Σp

2 language such that for all x,

|f(x) − g(x)| ≤
f(x)

|x|a
.

Notice that the goal in proving Theorem 1 is similar to the goal in showing that BPP ⊆ Σp
2.

There, we needed to approximate the function counting the number of accepting random strings to
within a constant factor. Now, we wish to approximate a #P function to within any polynomial
factor.

Proof. Let the underlying NTM for f run in time nc, and let us view it as a polynomial-time
verifier. The NTM takes a certificate y of length nc along with input x. We wish to determine the
size of the set Sx of certificates causing the NTM to accept. Consider applying a randomly chosen
hash function to the set of possible certificates, with h : {0, 1}nc

→ {0, 1}m for some value m. If
2m is large compared to Sx, we expect that h(Sx) covers only a small portion of the range. If 2m

is small compared to Sx, we expect h(Sx) to cover a large portion of the range. If we take a small
collection of hash functions, they will collectively cover all of {0, 1}m provided Sx is roughly the

2

same size as 2m. We will construct a Σp
2 predicate that can be queried to determine if a small set

of hash functions covers the range. By querying this language for increasing values of m until we
get a negative answer, we get an estimate for |Sx|.

First attempt. We mimic the proof that BPP ⊆ Σp
2 to try to determine if |Sx| ≈ 2m. There,

we showed that if x is accepted by a BPP machine, then there exists a small set of shift vectors
σ1, ..., σt so that shifting the witness set covers the entire set of random strings. Here, we use hash
functions rather than shift vectors, and want to see if hashing the witness set by a small set of hash
functions covers all of {0, 1}m.

We first bound the probability that a fixed z ∈ {0, 1}m is not hit by a randomly chosen h. We
wish to upper bound Prh∈H[(

∑

y∈Sx
χh(y)=z) = 0]. We would like to use the fact that choosing

h at random results in pairwise independent samples to use Chebyshev’s inequality to bound this
probability. To do this, we need to compute the expected value of the sum. By linearity of
expectation and the properties of universal hash functions,

Eh∈H[
∑

y∈Sx

χh(y)=z] =
∑

y∈Sx

Eh∈H[χh(y)=z] =
∑

y∈Sx

1

2m
=

|Sx|

2m
.

Denote this value as Em. By Chebyshev’s inequality and pairwise independence,

Prh∈H[(
∑

y∈Sx
χh(y)=z) = 0] ≤ Prh∈H[|

∑

y∈Sx
χh(y)=z − Em| ≥ Em]

≤
σ2(

P

y∈Sx
χh(y)=z)

E2
m

=
|Sx|

1
2m (1− 1

2m)

E2
m

< 1
Em

.

Then if |Sx| ≥ 2m+1, the probability that a fixed z is not hit by a randomly chosen h is at most
1/2. By picking t hash functions independently, this probability is at most 1/2t. A union bound
over all z shows that if |Sx| ≥ 2m+1 then {0, 1}m is covered by t randomly chosen hash functions
with probability at least 1− 2m

2t . On the other side, each hash function covers at most |Sx| elements
of the range, so if t · |Sx| < 2m the probability of covering the range is 0. To sum up,

|Sx|

2m
≥ 2 and t ≥ m ⇒ (∃h1, ..., ht)(∀z ∈ {0, 1}m)[z ∈

t
⋃

i=1

hi(Sx)] (1)

|Sx|

2m
<

1

t
⇒ ¬(∃h1, ..., ht)(∀z ∈ {0, 1}m)[z ∈

t
⋃

i=1

hi(Sx)]. (2)

We can encode the RHS of the above as a language which we can query to determine if |Sx| ≈ 2m or
not. This can be used to get the approximation factor that we desired, but unfortunately evaluating
the inner predicate (z ∈

⋃t
i=1 hi(Sx)) requires an existential quantifier to guess a witness y that is

mapped to z by some hi - meaning we would need a Σp
3 language.

Second attempt. With a bit of work, we can reduce the complexity of the oracle from Σp
3 to

Σp
2. As the inner predicate needs an existential quantifier, this would be achieved if we could swap

the order of the first two quantifiers in (1) and (2). Notice that this is not a problem for (1), but
doesn’t work for (2). As for (2), under the stronger assumption that t · |Sx| ≤ 2m−1, we have that

(∀h1, ..., ht) Pr
z∈{0,1}m

[z ∈
t

⋃

i=1

hi(Sx)] ≤
1

2
.

3

Thus, if we pick ℓ z’s at random (we abbreviate this as Z = z1, ..., zℓ),

(∀h1, ..., ht) Pr
Z

[Z ⊆
t

⋃

i=1

hi(Sx)] ≤
1

2ℓ
.

So if 2ℓ > # choices for h1, ..., ht,

Pr
Z

[(∃h1, ...ht)[Z ⊆
t

⋃

i=1

hi(Sx)]] < 1. (3)

We conclude that

|Sx|
2m ≥ 2 and t ≥ m ⇒ (∀Z)(∃h1, .., ht)[Z ⊆

⋃t
i=1 hi(Sx)],

|Sx|
2m ≤ 1

2t ⇒ ¬(∀Z)(∃h1, ..., ht)[Z ⊆
⋃t

i=1 hi(Sx)].
. (4)

We now set the parameters and verify that the RHS is a Πp
2 predicate. We set t = m and need to set

ℓ so that 2ℓ > # choices for h1, ..., ht. Notice that the running time of the predicate has a factor of
ℓ to guess Z = z1, ..., zℓ, so we also need ℓ to be polynomial. This is where it is critical that we are
drawing the hi from a universal family of hash functions. The examples we gave earlier show that
hi can be specified with O(nc + m) bits, so setting ℓ = Θ(m · (nc + m)) is good enough to ensure
that 2ℓ is large enough. The inner existential quantifier is now side-by-side with the existential
quantifier needed to evaluate the inner predicate, and we conclude that the RHS is a Πp

2 predicate.
Finally, the Σp

2 language that is the complement of the above is equivalent when used as an oracle.

We now see how to use an oracle to the Σ2 language to approximate |Sx|. As mentioned earlier,
we query the predicate for each value of m = 1, 2, ..., nc and determine the first value m∗ where the
answer to the predicate is negative. By (4), we know that for m ≤ (log |Sx|) − 1 the predicate is
answered positively; and for m ≥ (log |Sx|+log log |Sx|)+O(1) the predicate is answered negatively.
Then (log |Sx|) − 1 ≤ m∗ ≤ (log |Sx| + log log |Sx|) · O(1), which can be rewritten as

|Sx| ≤ 2m∗+1 ≤ O(|Sx| log |Sx|).

As log |Sx| ≤ nc, we have an approximation for |Sx| that is within a fixed polynomial factor and is
computable in PΣp

2 .
But we would like to be within any polynomial factor, in particular within 1/na for some

constant a. We obtain this by applying the above procedure on a modified predicate. If f ∈ #P is
the original function we are trying to approximate, we apply the above algorithm on the function
f ′ = fnd

for a constant d we choose later. By the closure properties of #P, f ′ is a #P function
whenever f is. By the above, our approximation for f ′ gives

f ′(x) < 2m∗+1 < O(f ′(x) log(f ′(x))).

Taking a 1/nd power and rearranging, this becomes

f(x) ≤ 2(m∗+1)/nd

≤ f(x)(O(nd log f(x)))1/nd

≤ f(x)(O(nd+c))1/nd

.

We have an approximation for f(x) with relative error < (O(nd+c))1/nd
= 2(O(1)+(d+c) log n)/nd

. By
looking at the Taylor expansion of this value, we see that it is 1 + Θ(log n

nd). We can set d large
enough so the relative error is at most 1/na.

4

A few notes about the above proof.

• If the condition for (3) is strengthened to 2ℓ > 2 · # choices for h1, ..., ht, then we have

|Sx|

2m
≥ 2 and t ≥ m ⇒ Pr

Z
[(∃h1, ..., ht)[Z ⊆

t
⋃

i=1

hi(Sx)]] = 1,

|Sx|

2m
≤

1

2t
⇒ Pr

Z
[(∃h1, ..., ht)[Z ⊆

t
⋃

i=1

hi(Sx)]] ≤
1

2
.

Plugging this into the argument shows that the approximation can be “computed in RPNP”
in the following sense: there is a randomized machine with oracle access to an NP language
which computes an approximation to f(x) where the estimate is never smaller than the true
value of f(x) and is never larger than (1 + 1

|x|a) · f(x).

• The language that is used as an oracle is a Πp
2 predicate and remains so even if checking

whether y ∈ Sx requires nondeterminism.

Both of these will play a role in an application of approximate counting (to AM games) later in
the semester.

3 Exact Counting

Our next result will be the following:

Theorem 2. Any language in the polynomial hierarchy can be decided in polynomial time with a
single oracle query to a #P function, namely PH ⊆ P#P[1].

We will prove this theorem in three parts.

1. We first show NP ⊆ RPUNIQUE-SAT. UNIQUE-SAT is the promise problem defined on for-
mulae that have exactly either one or zero satisfying assignments, with the positive instance
being uniquely satisfiable formulas. The UNIQUE-SAT oracle is guaranteed to give the cor-
rect answer on such formulae, and can act arbitrarily on others. In fact, the RP algorithm
given is correct even if the oracle gives inconsistent answers on queries that are outside of the
promise.

2. Using the first part, we will show that PH ⊆ BPP⊕P.

3. We will finish the proof by showing that BPP⊕P ⊆ P#P[1].

In this lecture, we prove the first part of the theorem.

3.1 Solving NP with randomness and UNIQUE-SAT oracle

We again use hash functions for this theorem. Consider the NTM for SAT running in time nc.
We look at the set of all possible assignments for the formula given as input and consider applying
a hash function on these. The idea is to try to choose the range of the hash function about the
same size as Sx. If we can achieve this, we show that a randomly chosen hash function with high

5

probability maps a unique satisfying assignment to 0m. This gives us a potential UNIQUE-SAT
query for the oracle.

We first bound the probability that a randomly chosen hash function maps a unique satisfying
assignment to 0m. Let Sx be the set of satisfying assignments, and let Hm be a universal family of
hash functions from {0, 1}nc

to {0, 1}m. The probability that h maps a unique satisfying assignment
to 0m is given by

Pr
h∈Hm

[
∑

y∈Sx

χh(y)=0m = 1] = Pr
h∈Hm

[
∑

y∈Sx

χh(y)=0m ≥ 1] − Pr
h∈Hm

[
∑

y∈Sx

χh(y)=0m ≥ 2].

For the first term we have

Pr
h∈Hm

[
∑

y∈Sx

χh(y)=0m ≥ 1] ≥
|Sx|

2m
−

(

|Sx|

2

)

1

22m

by considering the first two terms of the inclusion-exclusion principle expansion of the probability
and using pairwise independence of the hash functions. For the second term we have

Pr
h∈Hm

[
∑

y∈Sx

χh(y)=0m ≥ 2] ≤

(

|Sx|

2

)

1

22m

by union bound and pairwise independence. Putting these two together and using the fact that
(|Sx|

2

)

≤ |Sx|2

2 gives us

Pr
h∈Hm

[
∑

y∈Sx

χh(y)=0m = 1] ≥
|Sx|

2m

(

1 −
|Sx|

2m

)

which is equal to X(1−X) for X = |Sx|
2m . This value is symmetric around X = 1/2 and achieves its

maximum of 1/4 here. As |Sx|
2m increases by 2 for each value of m, there is some choice of m causing

the probability to be in the range [1/3, 2/3] providing Sx 6= ∅. For that value of m, the probability
that a randomly chosen hash function maps a unique satisfying assignment to 0m is at least 2/9.

Given the above analysis, the following is the RPUNIQUE-SAT algorithm for SAT.

INPUT: formula φ.
(2) foreach m = 0, 1, 2, ..., nc

(3) Pick h ∈ Hm at random.
(4) Convert the following into a SAT query and ask the UNIQUE-SAT oracle:

is there an assignment y that both satisfies φ and h(y) = 0m?
(5) if Oracle says yes then Use self-reducibility to find y, and verify φ(y) = 1.

If yes, then output “Yes”.
(6) Output “No”.

Because we are choosing h from a universal family of hash functions, choosing the hash function
can be done in polynomial time. The rest of the algorithm also runs in polynomial time. Suppose
φ is satisfiable. Then for at least one choice of m, with probability at least 2/9 line (4) corresponds
to a uniquely satisfiable formula. Notice that the formula remains uniquely satisfiable when using
self-reducibility, so in this case, the algorithm correctly outputs “Yes”. If φ is not satisfiable, the
algorithm always outputs “No”. The probability of success on satisfiable formulas can be amplified
by repeating the above, so the algorithm is RPUNIQUE-SAT.

6

4 Next time

In the next lecture, we will complete the proof of parts 2 and 3 of Theorem 2. Having done that,
we will turn our attention to other domains within complexity theory, namely, interactive proofs,
Arthur-Merlin games and the PCP theorem.

Appendix

A Alternate proof of approximate counting

Here we given an alternate proof of Theorem 1 that uses the notion of isolation.

Proof. Let the underlying NTM for f run in time nc, and let us view it as a polynomial-time
verifier. The NTM takes a certificate y of length nc along with input x. We wish to determine the
size of the set Sx of certificates causing the NTM to accept. Consider applying a randomly chosen
hash function to the set of possible certificates, with h : {0, 1}nc

→ {0, 1}m for some value m. If 2m

is small compared to Sx, we expect that there are many collisions between members of Sx. If 2m

is large compared to Sx, we expect few collisions. If we are able to determine the relative number
of collisions for each value of m = 1, 2, ..., nc, we can come up with an estimate for |Sx|.

These ideas are formalized by using the concept of isolation. Let H be a universal family of
hash functions from {0, 1}nc

to {0, 1}m. y ∈ Sx is isolated by h ∈ H if for all y′ ∈ Sx not equal
to y, h(y) 6= h(y′). If Sx is small compared to 2m, then a large portion of Sx should intuitively be
isolated by a randomly chosen h. In this case, only a small number of hash functions should be
required to guarantee that each y ∈ Sx is isolated by at least one of them. On the other hand, if Sx

is large compared to 2m, we will show that no small set of hash functions can isolate each y ∈ Sx.
We now quantify these ideas. We first bound the probability that a fixed y ∈ Sx is not isolated

by a random h.

Pr
h∈H

[y not isolated by h]
(a)
= Pr

h∈H
[

∨

y′∈Sx,y′ 6=y

h(y′) = h(y)]

(b)

≤
∑

y′ 6=y∈Sx

Pr
h∈H

[h(y′) = h(y)]
(c)
=

∑

y′ 6=y∈Sx

1

2m

(d)
<

|Sx|

2m
.

(5)

(a) is by definition of isolation; (b) is by union bound; (c) is because h is chosen at random from a
universal family of hash functions; (d) is summing over all y′ 6= y ∈ Sx.

Now consider the probability that for a random choice of t hash functions, y ∈ Sx is not
isolated by any of them. Because the events (y not isolated by hi) for a fixed y are independent for
independently chosen hi, we have

Pr
h1,...,ht∈H

[y not isolated by any of h1, ..., ht] =

(

Pr
h∈H

[y not isolated by h]

)t

<

(

Sx

2m

)t

. (6)

Now consider the probability that there is at least one y ∈ Sx not isolated by any of h1, ..., ht. A

7

union bound gives

Pr
h1,...,ht∈H

[Sx not isolated by h1, ..., ht] ≤
∑

y∈Sx

Pr
h1,...,ht∈H

[y not isolated by h1, ..., ht]

< |Sx|

(

|Sx|

2m

)t

=
|Sx|

t+1

2mt

meaning the probability is less than 1 when 2m > |Sx|
(t+1)/t. This gives us a method for testing

whether 2m is roughly at least as large as Sx. Namely, for all large enough m, we know there are a
choice of h1, ..., ht isolating all of Sx. We also would like a method for testing whether 2m is roughly
at most as large as Sx. Notice that each hi can isolate at most 2m elements of Sx, so h1, ..., ht can
isolate at most t2m. Then if t2m < |Sx|, there can be no h1, ..., ht isolating all of Sx.

Now let t = m for simplicity. By the above discussion, for all m = 1, 2, ..., log(|Sx|)−log log(|Sx|)
there can be no set of hash functions h1, ..., hm isolating all of Sx; while for all m = 1+log(|Sx|), 2+
log(|Sx|), ..., n

c there do exist h1, ..., hm isolating all of Sx. This gives us a method to estimate the
size of Sx: test the predicate

(∃h1, ...hm ∈ H)(∀y ∈ Sx)[∨m
i=1(hi isolates y)] (7)

for each value 1, 2, ..., nc and determine the first value m∗ for which the predicate evaluates to true.

Claim 1. (7) is a Σp
2 predicate.

We finish the analysis given this claim, then prove the claim. From the discussion above, we
know log |Sx| − log log |Sx| < m∗ < 1 + log |Sx| which can be rewritten as

|Sx|

2 log |Sx|
< 2m∗−1 < |Sx|. (8)

As log |Sx| ≤ nc, we have an approximation for |Sx| that is within a fixed polynomial factor and
is computable in PΣp

2 . We can then use the same method as given in section 2 to make the
approximation ratio any polynomial.

All that remains is to verify that (7) is in Σp
2. This is the point where we use the fact that we are

choosing the hi from a universal family of hash functions rather than at random. Because we are
choosing from H, the initial existential guesses are polynomial in size. We claim that the remaining
predicate (∀y ∈ Sx)[∨m

i=1hi isolates y] is a coNP predicate. This is realized with the predicate

(∀y ∈ {0, 1}nc

)(∃i ∈ {1, ...,m})(∀y′ ∈ {0, 1}nc

)[y ∈ Sx ∧ y′ ∈ Sx ⇒ hi(y) 6= hi(y
′)].

Testing y ∈ Sx is done in polynomial time by evaluating the NTM when given y as a certificate,
and the existential phase can be pushed inside since it is of polynomial size. Hence, this is a Σp

2

predicate.

We have shown that we can approximate f(x) deterministically using a Σp
2 oracle. In fact, this

can be done using a randomized algorithm with a NP oracle. Consider (7), and let us pick the hash
functions at random. For large enough values of m, most hash functions satisfy the inside coNP
predicate, while for small enough values of m no set of hash functions can satisfy the predicate.
Then the m∗ derived by randomly selecting hash functions and querying the inside coNP predicate
with high probability still satisfies (8). Notice that the estimate for |Sx| derived errors only in one
direction - no choice of random functions can satisfy the inside coNP predicate of (7) for small
values of m.

8

