
CS 710: Complexity Theory 4/20/2010

Lecture 24: Interactive Proofs

Instructor: Dieter van Melkebeek Scribe: Jeff Kinne and Ashutosh Kumar

Last time we introduced the notion of universal families of hash functions and used them to
establish results that relate the counting complexity classes to the polynomial hierarchy. We were
in the middle of the proof of the theorem stating that any language in the polynomial hierarchy
can be decided in polynomial time with a single query to a #P function. Today we’ll complete this
proof by completing the proofs of the inclusions PH ⊆ BPP⊕P and BPP⊕P ⊆ P#P[1].

Next we’ll introduce the notion of interactive proof systems which models computation as a
result of interaction between two parties. We make some remarks on how various modifications
of the definition affect the class of languages this model can compute. We’ll define public/private
coin protocols, and first show that the graph non-isomorphism problem admits an interactive proof
using private coins. After that, we’ll also show that there is an interactive proof for the same
problem that uses public coins. In subsequent lectures, we’ll see that this provides further evidence
that the graph isomorphism problem is not NP-complete.

1 Proof of PH ⊆ P#P[1]

Note that we had already shown that NP ⊆ RPUNIQUE-SAT. We’ll use this to get a randomized
reduction of PH to ⊕P. Because UNIQUE-SAT only cares about formulas with exactly 0 or 1
satisfying assignments, ⊕SAT solves UNIQUE-SAT on formulas within the promise. This shows
that NP ⊆ BPP⊕P.

Given this, we use the fact that a problem from the first homework relativizes. Namely, NP ⊆
BPP ⇒ PH ⊆ BPP relativizes. So NP⊕P ⊆ BPP⊕P ⇒ PH⊕P ⊆ BPP⊕P. We want to show the
hypothesis of this. To get this, we notice that NP ⊆ BPP⊕P relativizes as well, giving NP⊕P ⊆
(BPP⊕P)⊕P.

In general, giving an additional oracle O2 to an oracle machine with access to O1 can be solved
by the base machine by giving it access to oracles O1 and OO2

1 . For the case of (BPP⊕P)⊕P, we
get that a BPP machine requires access to a (⊕P)⊕P oracle in addition to a ⊕P oracle. These
can be combined into a single (⊕P)⊕P oracle using the completeness of ⊕SAT, and using the fact

that (⊕P)⊕P = ⊕P, we get NP⊕P ⊆ BPP(⊕P⊕P) = BPP⊕P. Having achieved NP⊕P ⊆ BPP⊕P, we
conclude that PH ⊆ PH⊕P ⊆ BPP⊕P.

We point out that the proof given here of this result is simpler than the original proof. This is
a demonstration of the power of relativization.

1.1 Deterministic reduction of BPP⊕P to #P

Given a language L in BPP⊕P, we wish to determine if x ∈ L by making a single query to a #P
function. We first show that we can separate out the randomized portion of L from the counting
portion. This will be useful in performing the reduction.
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Definition 1. Let C be a complexity class. We define the BP operator to give a new complexity
class of languages, where BP · C = {L|(∃c > 0)(∃L′ ∈ C)

x ∈ L ⇒ Pry∈|x|c[〈x, y〉 ∈ L′] > 2/3,

x /∈ L ⇒ Pry∈|x|c[〈x, y〉 ∈ L′] < 1/3 }

Notice that BP ·P = BPP, so this is a reasonable definition of the BP operator. The alternative
characterization of BPP⊕P we use is given by the following.

Claim 1. BPP⊕P = BP · ⊕P.

Proof. We show that for any complexity class C, BPPC = BP ·PC . The result then follows by using
⊕P as C and the fact that P⊕P = ⊕P.

Consider a BPP machine that can ask queries to a C language. Without changing the compu-
tation, the machine can guess its random bits at the beginning the computation before proceeding.
What is left is a PC predicate. Now consider a BP · PC language. The BPPC machine computing
the same language simply generates enough random bits to be the second input of the PC machine
and then simulates that machine.

Now consider a language L ∈ BP · ⊕P which we hope to solve in P#P[1]. By definition, there is
some f ∈ #P such that

x ∈ L ⇒ Pr|y|=nc[f(x, y) ≡ 1 (mod 2)] > 2/3

x /∈ L ⇒ Pr|y|=nc[f(x, y) ≡ 1 (mod 2)] < 1/3

We would like to create a #P function which sums f over all y such that we can detect the gap in
probability. The following claim is the main ingredient to make this happen.

Claim 2. Let f ∈ #P. Then there is a function g ∈ #P such that

f(z) ≡ 1 (mod 2) ⇒ g(z, 0M ) ≡ −1 (mod 2M )
f(z) ≡ 0 (mod 2) ⇒ g(z, 0M ) ≡ 0 (mod 2M )

where M = 2m is some power of 2.

Before proving this claim, we see how it allows us to complete the construction. Notice that if
f(z) ≡ 1 (mod 2), then the last M bits of −g(z, 0M ) are 000...001; if f(z) ≡ 0 (mod 2), the last M
bits are 000...000. We would like to sum up −g(z) for all z = (x, y) in such a way that the results
do not “spill over” past the last M bits. Because we must sum over 2nc

many y, we need to pick
M > nc to ensure there is no spill over. Namely notice that if M > nc, then

x ∈ L ⇒
∑

|y|=nc −g(x, y, 0M ) (mod 2M ) > 2
32|x|

c

x /∈ L ⇒
∑

|y|=nc −g(x, y, 0M ) (mod 2M ) < 1
32|x|

c

.

In fact, by picking M > nc we ensure there is a single bit of the sum that we can check to distinguish
between the two cases. Thus, g′(x) =

∑
|y|=nc g(x, y, 0M ) is the #P function that we query once

to determine if x ∈ L or not. That is, we compute g′(x), and check if −g′(x) (mod 2M ) is > 2
32|x|

c

or not. Notice that g′ is in fact a #P function because a machine can branch on all y and then
compute g(x, y, 0M ) on each branch.

All that remains is the proof of the claim.
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Proof of Claim 2. The base of the construction is the function h(z) = 4z3 + 3z4 which has the nice
property that

z ≡ −1 (mod 2M ) ⇒ h(z) ≡ −1 (mod 22M )
z ≡ 0 (mod 2M ) ⇒ h(z) ≡ 0 (mod 22M )

Given this property of h, g(z) is the result of applying h recursively m = log M times to f(z).
The claimed property of g(z) follows from the property of h. Consider the running time of the
underlying NTM machine whose number of accepting paths is g. Each application of h increases
the running time by a constant factor, so overall g is a factor 2O(m) = MO(1) slower than f - thus
g ∈ #P.

All that remains is to prove the claimed property of h. Suppose z ≡ b (mod 2M ), that is
z = q2M + b for some integer q. Then if we look at the expansion of h(z) and remove all terms with
a factor of 22M or higher power of 2M , we get h(z) ≡ 4(3b2q2M + b3) + 3(4b3q2M + b4) (mod 22M ).
For b = 0, this gives us 0 (mod 22M ), and for b = −1, −1 (mod 22M ).

2 Interactive Proof Systems

Definition 2 (Interactive Proof Systems). An interactive proof system for L is a protocol (P, V ),
where P is called the prover, and V is called the verifier. P is an all-powerful( i.e., no restrictions on
its computational resources), randomized Turing machine, and V is a randomized Turing machine
running in time polynomial in the input length. In a protocol (P, V ), we have:

1. P, V have read-only access to the input x.

2. P, V have read-only access to separate random-bit tapes.

3. P can write messages on tape TP→V which V has read access to.

4. V can write messages to P on tape TV →P which P has read access to.

5. x ∈ L iff V accepts.

6. At any one time, exactly one of V and P is active, and the protocol defines how they take
turns being active.

The protocol (P, V ) also has to satisfy the following conditions:

• completeness(easy to prove membership of members):

x ∈ L =⇒ Pr[(V ↔ P ) accepts x] ≥ c

• soundness(hard to prove membership of non-members):

x /∈ L =⇒ (∀P ′) Pr[(V ↔ P ′) accepts x] ≤ s

where the probabilities are over all coin flips of P and V ; (V ↔ P ) refers to an interaction between
the P and V ; c, s are the completeness and soundness parameters of the interactive proof system,
respectively. c is normally set to 2/3 and s to 1/3.
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For the soundness condition, we choose to quantify over all provers since the critical issue is that
the verifier itself needs to be sufficiently robust even against “malicious” provers that do not follow
the protocol. Note that we can also apply the amplification technique to boost the probability of
deciding correctly, and the verifier would still be poly-time. For completeness, c = 1 means perfect
completeness and this means that no true statement is rejected, and is something we strive for.

We make the following observations:

1. Randomness for P is not essential. For each turn it takes, since it is all-powerful, it can figure
out the coin flips that will maximize the probability of the verifier accepting, and perform
the computation corresponding to those coin flips.

2. On the other hand, the randomness of V is essential, as otherwise, we get only NP. If V is
deterministic, then it accepts/rejects with probability 1. Then, using the above fact that we
can assume P is deterministic, and that c > 0, we get that (V ↔ P ) always accepts members
of L. Since V can only read and write a polynomial number of symbols, the length of the
transcript of the interaction (V ↔ P ) is polynomial in the length of x, and is a polynomial-
length certificate of x’s membership. In particular, the sequence of responses of P convinces
V of x’s membership.

3. If we assume perfect soundness, we get NP as well. This is because x ∈ L iff there exists
a sequence of random “questions” by the verifier and a sequence of “answers” by P that
convinces V of x’s membership. The converse holds by the assumption of perfect soundness.
The other direction has a similar proof as above.

4. Without interaction, since the verifier does not receive any information from the prover, we
get BPP.

5. By requiring the verifier’s random bit tape to be separate from the prover’s, the proofs we
defined are actually private coin interactive proofs. Public coin interactive proofs are where
the verifier tosses coins and reveals them to the prover after it’s turn is up.

The corresponding complexity class is IP = {L|L has an interactive proof system}.

3 Power of interaction

Let us now illustrate what we can do with interaction and randomness in the verifier. In particular,
we would like to be able to obtain short interactive proofs for problems for which we do not know
a short standard proof. One example of such a problem is graph non-isomorphism(GNI).

Theorem 1. GNI ∈ IP

Remember that GI is one of the problems that we think are NP-intermediate. Also, GI has
short standard proofs. This theorem by itself will not show that the set of tautologies have short
interactive proofs(coNP vs IP). GI is probably not NP-complete, and equivalently, GNI is probably
not coNP-complete. In fact, we will give some evidence that GI is not NP-complete.

Before we begin with the proof, we give an intuitive analogy for the way the IP protocol for GNI
works. One day, Merlin shows a sword to King Arthur and claims that it is Excalibur. However,
Arthur is unconvinced since to him it looks exactly like his own sword. So, Arthur would like
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Merlin to convince him that at least he could tell the difference between Excalibur and Arthur’s
sword. To this end, Arthur turns around, hides the swords and flips a coin. Based on the coin flip,
he produces one of the swords and asks Merlin whether it is the purported Excalibur or Arthur’s
sword. If Merlin answers incorrectly, then Arthur knows that Merlin had lied. Otherwise, he
repeats the procedure until he is convinced.

Note that the usage of the name “Arthur” for the verifier and “Merlin” for the prover is standard
in the literature, but for public coin systems. The system below uses private coins.

Proof Sketch. Given 2 graphs (G0, G1), we would like to show that they are non-isomorphic. An
initial idea, based on the analogy above, is to have V flip a coin, produce one of the graphs G based
on the coin flip and ask P which of G0, G1 it is. But this is too easy since V could compare G with
G0, G1 by itself. So, instead we have V pick G at random, permute the vertices of G randomly,
and ask P to identify G.

Using ≡ to denote isomorphism, if G0 6≡ G1, then P can identify G by trying all permutations
on G0, G1 and since G0 6≡ G1 exactly one permutation on exactly one of the 2 graphs give G.
Otherwise, there exists permutations π, σ such that π(G0) = σ(G1) = G, and so P has no way of
identifying which of G0, G1 was used to produce G. The best it can do then is flip a coin and guess
an answer.

So, this protocol satisfies perfect completeness and has s ≥ 1/2. We can decrease s by increasing
the number of rounds.

We remark that since the verifier is essentially requiring the prover to determine the result of its
coin toss, it is crucial that the protocol uses private coins. We next consider interactive protocols
that remain secure even when the verifier’s random coins are made public. Although the above
protocol for GNI does not work in this setting, there is an alternate protocol that does work with
public coins.

4 Bounded-round interactive proof systems

We start with the formal definition of AM. In addition to requiring public coins, we limit the
number of rounds of interaction between the verifier and prover.

Definition 3. AM is a public coin system in which Arthur moves first. He flips some coins to
determine what to ask Merlin. Arthur then runs a deterministic predicate on the coins, Merlin’s
reply and the input.

Formally, a language L is in AM if for some V ∈ P:

x ∈ L =⇒ Pr
|z|=nc

[(∃y ∈ Σnc

)V (x, y, z)] ≥ 2/3

x /∈ L =⇒ Pr
|z|=nc

[(∃y ∈ Σnc

)V (x, y, z)] ≤ 1/3

Now we present the AM protocol for GNI.

Theorem 2. GNI ∈ AM
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Firstly, we review the Lower Bound Protocol. We have some subset Sx ⊆ {0, 1}n whose size
we would like to estimate. We have a universal family of hash functions from n bits to m bits,
where the range of the hash functions is roughly the same as the size of Sx. Then, there is a good
chance that a hash function chosen randomly from that family will map Sx “evenly” on {0, 1}m.
In particular, a few hash functions from that family will suffice to cover {0, 1}m as an image of Sx.
The key point is that if Sx is sufficiently big relative to {0, 1}m, then it is possible, otherwise we
need much more functions.

The modifications we will make to the protocol is that we will pick some l2 points in the range
at random, for some parameter l. And now, we would like to determine if we can pick l hash
functions such that each of the selected points is in the image of Sx under one of the chosen hash
functions. We saw in last lecture that this gives a Σp

2 predicate.
We can obtain from this an AM protocol to distinguish between the case when |Sx| ≥ 2m and

the case when |Sx| ≤ 2m−1. Arthur picks some points pi in the range uniformly at random and
reveals them to Merlin. Merlin then responds with hash functions hi and points p′i in Sx along with
certificates of their membership in Sx. Finally, Arthur verifies the membership of points p′i in Sx

and that the image of p′i under the hash functions indeed covers all the points pi.
Applying some modifications to the analysis of the original protocol gives us the following

results: the AM protocol accepts with probability 1 in the case that |Sx| ≥ 2m, and in the other
case accepts with probability at most 1/3.

Proof sketch. Define Si = {H|H ≡ Gi} and S = S0 ∪ S1.
The key property that we use is that if G0 ≡ G1, then S0 = S1 so |S| = |S0| = |S1|, and

otherwise, |S| ≥ 2min{|S0|, |S1|}.
Since for GNI, we would like to distinguish between 2 sets of size differing by at least a factor of

2, we can adapt the above AM protocol for GNI. However, we need to know the sizes of S0, S1, S
to use it. By group theory, |Si||Aut(Gi)| = n! since Si are the cosets of the subgroup Aut(Gi) in
the symmetric group on n points.

Define Ti = {(H,π)|H ≡ Gi and π ∈ Aut(Gi)} and T = T0 ∪ T1. By the above, |Ti| = n!. So, if
G0 ≡ G1, |S| = n! and otherwise |S| = 2n!.

Since we have a constant factor gap in the sizes, we can use approximate counting to distinguish
the 2 sets, such that the larger set corresponds to the non-isomorphic case. We modify it into an
AM protocol as above and we are done.

5 Next Lecture

Next time we’ll show that if the graph isomorphism problem is NP-complete then the polynomial
hierarchy collapses to the second level. Our proof will use the fact that GNI ∈ AM. We’ll also
show that coNP ⊆ IP. The result that we’re aiming for is PSPACE = IP.
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