
CS 710: Complexity Theory 4/29/2010

Lecture 28: Harmonic Analysis

Instructor: Dieter van Melkebeek Scribe: Nathan Collins and Andrew Bolanowski

In the last lecture we discussed probabilistically checkable proofs and the PCP theorem (which
we did not prove). Today we give an alternate (equivalent) version of the PCP Theorem that is more
useful for making hardness of approximation arguments. We also give two examples of hardness of
approximation results, for MAX-3-SAT and MAX-IND-SET. Finally, we prove one inclusion on a
weaker version of the PCP Theorem stated in the last lecture. One part of this proof uses discrete
harmonic analysis, so we introduce enough discrete harmonic analysis to present that part of the
argument.

1 PCP Theorems and Hardness Approximation

Recall the PCP Theorem stated last time:

Theorem 1 (The PCP Theorem). NP = PCP(O(log n), O(1))

A PCP(r(n), q(n)) for the language L is a probabilistic oracle TM V (the verifier) s.t.

• If x ∈ L then (∃Π)Pr[V Π(x)] = 1.

• If x 6∈ L then (∀Π)Pr[V Π(x)] ≤ 1/2.

where the quantification is over proofs and the probability is over random coins flipped by the
verifier. The verifier uses r(n) random coins and makes q(n) queries to the proof Π.

1.1 An Approximation Equivalent to the PCP Theorem

To see the relationship between the PCP Theorem and hardness of approximation we prove that
the following theorem is equivalent to the PCP Theorem.

Theorem 2. There exists α < 1 and a poly-time computable f from 3-SAT to 3-SAT s.t. if a

3-CNF x is not in 3-SAT then the fraction of clauses of the 3-CNF f(x) that can be simultaneously

satisfied is less than α, and if x is in 3-SAT, then so is f(x).

Theorem 3. The PCP Theorem is equivalent to Theorem 2.

Proof. (⇓): Assuming the PCP Theorem, there exist constants q (the O(1) number of queries to the
proof) and c (the constant in the O(log n) number of random bits used), and a poly-time verifier
V , such that for each 3-CNF x

• If x ∈ 3-SAT then there exists a proof Π

Pr
ρ∈{0,1}c log n

[V Π(x)] = 1. (1)

1

0 1

0 1

0 1 0 1

0 1

Πiρ

Πiρ01
Πiρ00

Πiρ1
Πiρ0

Reject

Figure 1: The bits in Π queried by V Π
ρ depend only on ρ and bits of Π previously queried. The

nodes are labeled by the queried proof bit and the outgoing edges are labeled by the nodes value.

• If x 6∈ 3-SAT then for all proofs Π

Pr
ρ∈{0,1}c log n

[V Π(x)] ≤ 1/2. (2)

Let ρ denote a random bit string in {0, 1}c log n and Vρ denote V supplied with random bits ρ.
Once ρ is fixed, the value of Vρ(x) is completely determined by the (up to) q bits of the supplied
proof Π that Vρ(x) queries. The first bit that Vρ(x) queries is independent of Π, and in general the
kth bit queried is determined by the values of the previous k − 1 bits queried. Figure 1 illustrates
a decision tree for this procedure, in which the index iρb1,...,bk

is the k+ 1st proof bit that is queried

when the first k bits queried had the values b1, . . . , bk.
1

Now we construct a CNF representation of the decision tree. Let the variable xi represent the
value of the ith bit in Π. Then the disjunction of all rejecting path “signatures” gives a DNF
that is true iff V Π

ρ (x) rejects, where by path signature we mean the conjunction of variables and
variable negations that correspond to the query indices and values corresponding to that path. As
Figure 2 illustrates, negating that DNF gives a CNF which is false iff V Π

ρ (x) rejects, and is hence
equivalent to Vρ(x). Since there are at most 2q paths, and each path has length at most q, the
CNF constructed has at most 2q clause, each of length at most q.

Let Cρ denote the 3-CNF corresponding to the CNF constructed in the last step, gotten by
expanding each (≤ q)-clause into at most q 3-clauses. Then Cρ has at most q2q clauses and we

1The indices that are queried for a fixed Π can be written as iρ, i
ρ

Πiρ
, i

ρ

Πiρ Π
i
ρ
Πiρ

, i
ρ

Πiρ Π
i
ρ
Πiρ

Π
i
ρ
ΠiρΠ

i
ρ
Πiρ

, etc.

2

∧

∧

∨

¬
−→

q q

2q 2q

∨

V Π
ρ rejects rejecting path

Negation ofPath on which

Figure 2: Since the set of paths is prefix free, V Π
ρ rejects iff the query indices and values of a

rejecting path are realized by Π. We form a DNF of rejecting path “signatures” and negate it to
get a CNF that is true precisely when no rejecting path is realized.

define f(x) =
∧

ρ Cρ, where the top two levels of ANDs are contracted to form a CNF. Then f(x)
has at most ncq2q 3-clauses and either

• x ∈ 3-SAT: Then f(x) ∈ 3-SAT too, since the PCP system has perfect completeness (Equa-
tion (1)), and hence there exists Π that makes V Π

ρ (x) accept and Cρ be satisfied for all ρ.

• x 6∈ 3-SAT: Then f(x) 6∈ 3-SAT, since the PCP system has soundness 1/2 (Equation (2)),
and hence for all Π the computation V Π

ρ (x) rejects and Cρ is unsatisfied for at least one
half of all ρ. If Cρ is unsatisfied then at least one of its clauses is unsatisfied, and so the
proportion of f(x)’s clauses that are unsatisfied in this case is at least (1/2)(1/q2q) > 0,
giving α = 1 − 1/q2q+1 < 1

(⇓, alternative construction): Let ρ denote a random bit string in {0, 1}c log n and Vρ denote
V supplied with random bits ρ. For each π ∈ {0, 1}q simulate Vρ on x, supplying bits from π as
responses to Vρ’s proof queries, and keeping track of the proof bit indices that Vρ queries. I.e., the
first time Vρ queries a proof bit, record the index queried and supply the first bit in π. On each
subsequent query to the proof, check if the queried index has been queried previously and if so
supply the same bit of π as before. Each time a new proof index is queried, supply the next unused

bit in π. Let V
[π]
ρ denote the simulated machine.

Each proof index queried by V
[π]
ρ can depend on the values of the previously queried proof bits,

but in any case V
[π]
ρ queries at most q proof bits, so a q-bit π is sufficient for our simulation. Let

the variable yi represent the ith bit in a hypothetical proof Π. For each π ∈ {0, 1}q we can form a

disjunction ψρ,π that is false iff the variables corresponding to the proof indices that V
[π]
ρ queries

agree with the values in π. E.g., if q = 5, π = 01101, and V
[π]
ρ queries indices i1, i2, and i3, then

ψρ,π = yi1 ∨ yi2 ∨ yi3 .
We can now form a CNF ϕ that is satisfied iff its variables are set in such a way that they

3

correspond to a proof that makes Vρ accept for each ρ ∈ {0, 1}c log n. I.e.,

ϕ =
∧

¬V
[π]
ρ (x)

ψρ,π,

where the conjunction is taken over all ρ ∈ {0, 1}c log n and π ∈ {0, 1}q that cause V
[π]
ρ to reject x.

If x is in 3-SAT, then Equation (1) says that there exists a satisfying assignment for ϕ, since
a proof Π that makes Vρ accept x for all ρ can’t include the bits that make any included ψρ,π fail.
If x isn’t in 3-SAT, then Equation (2) says that any assignment will correspond to a proof Π that
makes Vρ reject for at least 1/2 of all ρ’s. In terms of our ψρ,π defined above, this says that we fail
to satisfy some ψρ,π included in the conjunction ϕ, for at least 1/2 of all ρ’s. Now, there are at

most 2qnc clauses in ϕ, so the fraction of clauses that are unsatisfied is at least (1/2)nc

2qnc = 1/2q+1

So far, we have ≤p
m reduced 3-SAT to SAT with “α = 1−1/2q+1.” To finish this direction of the

proof, we note that we can efficiently convert ϕ into an equivalent 3-SAT 3ϕ, where each clause C
in ϕ corresponds to at most q 3-clauses in 3ϕ, and whenever an assignment fails to satisfy C it also
fails to satisfy at least one of the q 3-clauses corresponding to C. So, completeness is preserved,
and whenever x is not in 3-SAT, the fraction of clauses that any assignment fails to satisfy is at
least (1/q)(1/2q+1), and so we have α = 1 − 1/(q2q+1) < 1.

(⇑): This direction is easier. Suppose that f is a reduction and α < 1 as in Theorem 2. Given
a 3-CNF x let V Π calculate f(x) and treat Π as a Boolean assignment for f(x). Since V can
only access O(log n) proof bits, it can’t simply check all of f(x)’s clauses. However, with O(log n)
random bits, V can choose a clause of f(x) at random and then check if Π satisfies it, accessing at
most 3 bits of Π. This procedure has perfect completeness, since if f(x) is satisfiable then Π can
be a satisfying assignment. If f(x) is unsatisfiable, then with probability α the clause V chooses
of f(x) is not satisfied by Π, giving soundness ≤ α. Our definition of PCP requires the soundness

be ≤ 1/2, so can we repeat this procedure ⌈ log 1/2
log α ⌉ times (the error is one-sided). This shows

that 3-SAT ∈ PCP(O(log n), O(1)) and the PCP Theorem follows from the NP-completeness of
3-SAT.

1.2 Implications of the PCP Theorem on Hardness of Approximation

Theorem 2 can be used to derive approximation bounds on certain NP optimization problems.
Examples include

• MAX-3-SAT: If a poly-time approximation algorithm A for MAX-3-SAT existed which gave
approximations to a factor better than α, then we could determine membership in 3-SAT by
running A on f(x) and accepting iff A(f(x)) ≥ (1 − α)#f(x),2 giving P = NP. We conclude
that approximating MAX-3-SAT to within α is NP-hard.

In fact, it turns out that for all ε > 0, it is NP-hard to (7/8 + ε)-approximate MAX-3-SAT
in poly-time. This follows from the existence of a PCP(O(log n), 3) for the problem E-3-
LIN (exactly 3 variables, linear equations) that has completeness c = 1 − ε and soundness
s = 1/2 + ε. An instance of E-3-LIN is a collection of linear equations: xi,1 ⊕ xi,2 ⊕ xi,3 = bi
where the bi are constants (either 0 or 1). The instance is in the language if there is a setting
of the variables that satisfies each equation. The PCP for E-3-LIN works by generating three

2#f(x) denotes the number of clauses in f(x).

4

indices i1, i2, and i3, and a bit b, and verifying that Πi1 ⊕ Πi2 ⊕ Πi3 = b. With this PCP
system s ≥ 1/2 since for random values Πi1 ⊕Πi2 ⊕Πi3 = b is satisfied half of the time. Also,
it’s unlikely to have c = 1 with this system, since deciding whether the system of equations
has a solution can be solved in polynomial time using Gaussian elimination.

The approximation result for MAX-3-SAT follows from the PCP for E-3-LIN by converting
each linear equation from an E-3-LIN instance into four clauses such that if the original
equation is not true with a given assignment then at least one of the four clauses must be
false. 3

• MAX-IND-SET: Given a 3-CNF x, form a graph G corresponding to f(x) as follows: For
each 3-clause c in f(x) add 7 nodes to G, where the nodes are labeled by c and one of the 7
possible satisfying assignments to c’s 3 variables. Add an edge to G between any two nodes
that together correspond to a conflicting variable assignment. Then for any clause c the 7
nodes corresponding to c form a clique, and so any anti-clique in G includes at most 1 node
from each of these 7 node clusters. When f(x) is satisfiable, we can choose 1 node from
each cluster, so the max independent set has size the number m of clauses in f(x). When
f(x) is not satisfiable, we can satisfy at most αm of f(x)’s clauses, and so the maximum
independent set will have size at most αm. So, an α-approximation of MAX-IND-SET would
imply P = NP.

Using more “technology” we can get a 1
n1−ε -approximability bound, for some ε > 0, where n

is the number of nodes in the graph. Note that this is a strong result since we can trivially
get a 1/n approximation by picking a single node.

That’s all we are going to say about hardness of approximation as it relates to PCPs.

2 A Weaker PCP Theorem

The proof of “the” PCP Theorem is quite elaborate, and we won’t see it in this class, but we will
prove a weaker PCP Theorem today. This result gives a flavor of the stronger PCP theorem - we
are able to verify a proof by querying only a constant number of bits in the proof. The result we
prove is weaker than “the” PCP theorem as we use a polynomial number of random bits.

Theorem 4. NP ⊆ PCP(poly(n), O(1)).

Notice that since PCPruns in polynomial time, limiting it to a polynomial number of random
bits doesn’t give anything useful. In the proof, we will create a PCP with perfect completeness for
3-CNF. Then we can use mapping reductions and the fact that 3-CNF us NP-complete. We want
a randomized polytime oracle Turing Machine V , such that

y ∈ 3 −CNF ⇒ ∃ΠPr(V Π(y)accepts) = 1 (3)

y /∈ 3 −CNF ⇒ ∀ΠPr(V Π(y)accepts) ≤
1

2
(4)

And, V uses O(1) oracle calls. A natural proof Π would be the satisfying assignment, but that
appears to need O(n) oracle calls. So we need some method to put more information into the bits.
We use the Hadamard code.

3See lecture 3, page 6, from CS 880 in 2004 for a more detailed explanation of the hardness of approximation
result for MAX-3-SAT.

5

Proof. The idea is to somehow convert certificates of membership in an NP language into something
easily verified by a PCP system. To do this we’ll use quadratic equations and Hadamard coding.
Given some 3-CNF ϕ we form an equivalent collection of quadratic equations and ask if they can
be simultaneously satisfied. E.g., we translate the clause c = x∨ y∨ z into the polynomial equation
(1−x)y(1− z) = 0 and introduce a new variable ξ = xy to reduce the degree from 3 to 2. Working
over Z2 we have an equivalent system of two equations: y⊕ yz⊕ ξ⊕ ξz = 0, and the new equation
ξ ⊕ xy = 0.

So, suppose we have converted ϕ into a system ofN quadratic equations in n variables x1, . . . , xn.
We want to convert this into a single equation. For a fixed assignment a to x, we could pick just 1
of the equations at random, but this will give terrible soundness. It could be the case that only 1
of the clauses were unsatisfiable. So we instead take a random linear combination of the equations.
Notice that all the equations will have zero on the right hand side, and denote the kth left hand
side by Qk. Then for each k ∈ [N] we have Qk =

⊕

i,j∈[n] qkijxixj for some coefficients qkij. The
satisfiability of ϕ is thus reduced to finding a solution to the system Qk = 0, for k ∈ [N].

Given a candidate assignment a = (a1, . . . , an) of the xis we have

Pr
ρ∈{0,1}N

[
⊕

k∈[N]

ρkQk(a) = 1

︸ ︷︷ ︸

(∗)

] = 1/2, (5)

if a fails to satisfy Q(a) ≡ 0, since
⊕

k∈[N] ρkQk(a) is the inner product of Q(a) (a non-zero vector)
with a random vector ρ. If a is a satisfying assignment, then Qk(a) = 0 for all k ∈ [N]. Thus, since
⊕

k∈[N] ρkQk(a) = 0 , so the probability in (5) is zero.
Define bij = aiaj for all i, j ∈ [n]. Then any quadratic in {ai} is linear in {bij}. Let the proof

π be a Hadamard encoding of b. Then checking (∗) amounts to querying one position in π: the
position corresponding to the vector with ijth entry given by

⊕

k∈[N] ρkqkijbij. For soundness we
need to be able to reject π’s that don’t Hadamard encode a b as defined above. To probabilistically
check that a given π is such a Hadamard code we perform the following tests

• Test 1: Probabilistically check that π is close to a Hadamard encoding of some b. Once we
know π is close to a Hadamard code we can use local decodability.

• Test 2: Probabilistically check that bij = biibjj. This is true for b as above since x = x2 in
GF(2).

To perform Test 1 we choose x, y ∈ {0, 1}n2
at random and verify that π(x)⊕ π(y) = π(x⊕ y).

Completeness of this test is clearly 1. If π is not close to any valid Hadamard code, i.e.

∀b ∈ {0, 1}n2
Pr

x∈{0,1}n2
[π(x) 6= 〈b, x〉] ≥ γ (6)

for some γ > 0, then
Pr[Test 1 fails] ≥ γ. (7)

To prove that (6) implies (7) we will use harmonic analysis, and we postpone that proof until the
end of the current proof. So, assume Test 1 passes with high probability. We can run the test
multiple times to boost confidence. Note that if γ ≤ 1

4 then the b is unique and we can use local
decoding. Each bit bij can be determined by

bij = 〈b, x〉 + 〈b, x+ ei〉 (8)

6

Since each of the inner products gives the correct value with probability ≥ 1 − γ, by the union
bound, the equality holds with probability ≥ 1 − 2γ, which is ¿1

2
To perform Test 2, we define matrices A and B by Aij = biibjj and Bij = bij, choose x, y ∈

{0, 1}n2
at random, and check that

x⊤Ay = x⊤By.

If A = B, i.e. if b is of the desired form, then Test 2 passes with probability 1. If A 6= B, then the
probability that Test 2 fails is at least 1/4, since if A 6= B, then x⊤A 6= x⊤B with probability at
least 1/2, since A and B differ in at least one column (think inner products again), and whenever
x⊤A 6= x⊤B, we have x⊤Ay = x⊤By with probability exactly 1/2. This test requires only three
queries to the proof, since

x⊤Ay =
⊕

i,j

xiAijyj = (
⊕

i,j

xibii)(
⊕

i,j

bjjyj)

and
x⊤By =

⊕

i,j

xiyjbij ,

and so we can query π at the positions corresponding to the vectors with ijth entry δijxi, δijyj,

and xiyj, respectively, where δij =

{

1, i = j

0, i 6= j
is a Kronecker delta function.

3 Harmonic Analysis

We now develop enough harmonic analysis to prove the implication (6) implies (7) in the proof of
the weak PCP Theorem. Hopefully people have seen some form of continuous harmonic analysis on
R or C, where functions are approximated using sin and cos (which are called harmonics). Today
we describe a discrete theory for functions

f : G→ C,

where G is a group. In this discrete theory the harmonics are characters of the group, i.e. homomor-
phisms from G into the multiplicative group of complex numbers C×. Recall that a homomorphism

is a function that respects the group operation, i.e. φ : G → C× is a character of G if for all
g, h ∈ G we have φ(gh) = φ(g)φ(h). Notice that if g ∈ G has finite order, which is true of all g ∈ G
if G is finite, then φ(g) ∈ eiR the unit circle, since φ(g)ord(g) = 1.

3.1 Properties of Group Characters

Before we get to our application of discrete harmonic analysis, we list without proof a few general
properties of group characters for finite groups

• The group characters form an orthonormal set with respect to the inner product

〈f1, f2〉 =
1

|G|

∑

g∈G

f1(g)f2(g) = E
x∈G

(f1(g)f2(g)),

where x 7→ x is complex conjugation.

7

• There at most |G| characters, since the space of functions G → C is a C-vector space of
dimension |G|. For many groups the number of characters is equal to the size of |G|, in which
case we biject G with its characters and write χg for the character corresponding to g ∈ G,
and then the characters form an orthonormal basis for the space of G → C functions. I.e.,
given f : G→ C, there exist Fourier coefficients {f̂(g)}g∈G such that

f =
∑

g∈G

f̂(g)χg .

The Fourier coefficients are easy to calculate since the χg are orthonormal, namely

f̂(g) = 〈χg, f〉.

• Let f̂ = g 7→ f̂(g) denote the vector of f ’s Fourier coefficients. Then the map f 7→ f̂
“respects” the inner product, i.e. given f1, f2 : G→ C we have

〈f1, f2〉 = |G|〈f̂1, f̂2〉,

which yields a Parseval identity
‖f‖2

2 = |G|‖f̂‖2
2. (9)

• For the convolution of f1 and f2, defined by

(f1 ∗ f2)(z) =
1

|G|

∑

x+y=z

f1(x)f2(y),

we get the relation

f̂1 ∗ f2 = f̂1f̂2.

This last equality allows for the reduction of some O(n2) computations to O(n log n) compu-
tations in signal processing.

3.2 Completing the Proof of the Weak PCP Theorem

That’s all we are going to say about harmonic analysis in general. For G = ({0, 1}n,⊕), or
equivalently ({±1}n, ·), where equivalence comes from the mapping x 7→ −1x, all elements are
order 1 or 2, and so the characters are of the form G→ {±1} ⊆ C. In this case, we have characters

χg(x) = (−1)〈g,x〉, (10)

where the inner product in the exponent is given by

〈x, y〉 =
⊕

i∈[n]

xiyi.

Such χg are characters since 〈g, x ⊕ y〉 = 〈g, x〉 ⊕ 〈g, y〉. The fact that 〈g, x〉 is the xth bit of the
Hadamard code for g provides the connection with our previous work. Since our characters take

8

values in {±1} ⊆ R, we can drop the complex conjugation in the definition of inner product for
functions G→ C, and we get

f̂(g) = 〈χg, f〉 = E
x∈G

[χg(x)f(x)]

= Pr
x

[f(x) = χg(x)] − Pr
x

[f(x) 6= χg(x)]

= 1 − 2Pr
x

[f(x) 6= χg(x)], (11)

and more generally
δgh = 〈χg, χh〉 = E

x∈G
[χg(x)χh(x)]. (12)

We now complete the proof of the Weak PCP Theorem, by proving that if for all b ∈ {0, 1}n2

Pr
x∈{0,1}n2

[π(x) 6= 〈b, x〉] ≥ γ

for some γ > 0, then
Pr[Test 1 fails] ≥ γ.

We prove the contrapositive via a calculation, where we use the {±1} domain for the values taken
by π

1 − 2Pr[Test 1 fails]

= Pr[Test 1 passes] − Pr[Test 1 fails]

= E
x,y

[π(x)π(y)π(x ⊕ y)]

= E
x,y

[(
∑

g1

π̂(g1)χg1(x))(
∑

g2

π̂(g2)χg2(y))(
∑

g3

π̂(g3)χg3(x)χg3(y))]

by switching to the Fourier domain and using the fact that χg3 is a homomorphism

=
∑

g1,g2,g3

π̂(g1)π̂(g2)π̂(g3) E
x
[χg1(x)χg3(x)] Ey

[χg2(y)χg3(y)]

by linearity of expectation, the independence of x and y, and the fact that E[χg(x)] = 1

=
∑

g

(π̂(g))3

by (12)

≤ max
g
π̂(g)

∑

g

(π̂(g))2

= max
g
π̂(g) (13)

since
∑

g(π̂(g))2 = 1, by (9)
= 1 − 2Pr

x
[π(x) 6= χgM

(x)]

9

by (11), where gM maximizes (13). Rearranging, we get

Pr
x

[π(x) 6= χgM
(x)] ≤ Pr[Test 1 fails] (14)

which finishes the proof, since by (10) we can rewrite (14) as

(∃gM ∈ {0, 1}n2
) Pr

x
[π(x) 6= 〈gM , x〉] ≤ Pr[Test 1 fails],

if we again interpret π to take values in {0, 1}, and this is the contrapositive of what we set out to
prove.

10

