
CS 710: Complexity Theory 5/4/2010

Lecture 29: Computational Learning Theory

Instructor: Dieter van Melkebeek Scribe: Dmitri Svetlov and Jake Rosin

Today we will provide a brief introduction to computational learning theory, a subject that
could easily be the focus of an entire course. We will begin by more precisely defining the learning
setting, wherein the goal is to learn a process through observing some examples of it and generating
a model for the process that could subsequently be used to predict its outcome in future instances.
A common example of such learners is the adaptable spam filter, which attempts to learn the
process by which human readers distinguish between spam and legitimate mail, with the ability to
account for individual preferences and to evolve over time as spam also changes.

We will then give a general algorithm for learning in a certain context and discuss decision lists
(and decision trees generally) in relation to that algorithm. Finally, for another, more restricted
setting we use techniques of harmonic analysis to construct a learner and discuss some examples of
processes it can learn.

1 Concept Learning

The notion we will develop is that of concept learning –the learning of a predicate so as to be
able to classify objects based on the truth value of the predicate on a given subject. We can thus
conceptualize this as a mapping c from {0, 1}n to {0, 1} for inputs of length n and using a single
bit to represent the truth or falsehood of the predicate. For our example above, we can think of an
input message as a string of text of length n and an output of 1 as indicating that the message is
believed to be spam. Note that this formulation is essentially analogous to the problem of deciding
membership in a language in computational complexity theory.

To precisely define a learning problem, we will need the following ingredients:

1. A concept class C capturing both the nature of the function to be learned and all a priori
information known about the class, its restrictions, etc. Also, C will be the set of all learnable
functions for the problem, with c ∈ C. Typically we will partition and index this class by n
and s as follows.

Definition 1. Cn,s is the partition of the concept class C for inputs of size n and imple-
mentations size-bounded by s (e.g., predicates computable by circuits of size no larger than
s).

2. An observation phase during which the learner acquires information in attempting to learn
the model. Various ways of observation are typically categorized as follows.

• Passive learning. In this setting (the one that typically applies), the learner makes
queries to a sample oracle to obtain a set of samples S(c,D) from some underlying
distribution D on {0, 1}n. This distribution need not be known to the learner; if it is
unknown the learning is said to be “distribution-free,” although in general a learning al-
gorithm should work correctly for any D. The samples may be given to the learner either

1

labeled or unlabeled; if they are labeled, this is called supervised learning. Unlabeled
samples lead to unsupervised learning and can give information about the underlying
distribution.

• Active learning. In this setting the learner can actively ask questions of its teacher.
Generally this is in the form of membership queries, which allow the learner to obtain
the labels for specific inputs x of its choosing. More powerfully, the learner can ulti-
mately make equivalence queries: after having formed a hypothesis about the concept
to be learned, it asks an oracle whether this hypothesis is exactly correct. The oracle
then responds either by confirming equivalence or providing a specific counterexample
misclassified by the hypothesis.

3. A hypothesis class H, likewise partitioned according to n and s, representing the set of all
possible predicates the learner could output. In proper learning, we have the ideal case where
H = C. However, we typically settle for prediction learning, where we allow H to be the
set of all predicates; in this case it is only important that the learned predicate accurately
predicts the behavior of c, not that it is equivalent to the concept in any deeper sense. These
are, of course, two extremes, and generally we have C (H (P , where P is the set of all
predicates. We might choose to do this simply for efficiency; learning is usually easier when
H) C. On the other hand, we occasionally perform agnostic learning, when we have no a
priori information about the concept; then we have C = P and we must try to approximate
C by as restrictive an H as we can.

4. A quality measure. We choose the error of a learning algorithm as the metric of its success.

Definition 2. The error ε of a learner equals Prx←D[h(x) 6= c(x)].

Here h represents the specific hypothesis chosen by the learner from the set H. When we
desire exact learning, we require that h = c everywhere or alternatively that ε = 0. This
usually requires equivalence queries except in the most simple settings. We could also use
the number of prediction mistakes made by the learner as a success metric; the goal is to
minimize the number of times the learner misclassifies the next sample from D.

5. A complexity measure. An information-theoretic measure is the number of samples necessary
to bring the error below a given ε, for instance. A complexity-theoretic measure is the
running time of the learning algorithm, taking into account the number of samples used and
the efficiency of their processing.

2 Distribution-Free Learning

As mentioned above, we would like our learning algorithm and its successful operation to be inde-
pendent of the underlying distribution chosen by the sampling oracle. Also, given that only in a few
cases can we actually manage exact learning, it generally suffices that the produced hypothesis is
mostly correct most of the time, i.e. that is probabilistically approximately correct. We formalize
these goals and the kinds of concepts for which we can achieve them as follows.

Definition 3. A concept class C is PAC-learnable (probabilistically approximately correctly) by
some hypothesis class H if there exists a learning algorithm L(n, s, δ, ε) such that (∀n, s, δ > 0, ε >

2

0)(∀c ∈ Cn,s)(∀D on {0, 1}n) L produces a hypothesis h ∈ Hn,s such that with probability at least
1 − δ the error is less than ε when L learns with labeled samples from D. Further, this process is
efficient if the running time of L is poly(n, s, 1

δ , 1

ε).

2.1 Decision Lists

A simple but nevertheless very common example of a PAC-learnable class is the set of concepts
that can be predicted by a decision list. Decision lists are a subset of binary decision trees (which
we have encountered earlier in this course) wherein at each node, at least one response to the
corresponding query leads to a conclusive answer; i.e., the tree will make a definitive classification
for at least one value of the queried bit. Figure 1 below gives an example of such a list.

x2

0

1 1

0

1

x5 x1 x3

1

0

0

0

Figure 1: A decision list that queries at most four bits of its input.

The length of a decision list is bounded by the length of its input; while it may query the bits in
any order, it cannot query any bit more than once. Upon querying any bit at a non-terminal step,
the list may end the computation on either a 0 or a 1 and output a result of either 0 or 1. At the
final step, the list may either output the value of the final bit queried or output its complement.
Therefore we find that |Cn| ≤ n! · 4n.

We also have a simple proper learning algorithm for this concept class: having seen m samples
from the distribution, output a decision list that is consistent with them (if such a consistent list
exists). How exactly to do this we leave as an exercise, but we will find a bound for m.

Theorem 1. Decision lists are PAC-learnable from m sample queries, with m = poly(n, log 1

δ , 1

ε).

Proof. We want to ensure that our learning algorithm L outputs bad hypotheses with low proba-
bility. A bad hypothesis h ∈ Hn is one such that Prx←D[c(x) 6= h(x)] ≥ ε. In this analysis we fix
h′ to be a specific bad hypothesis. We then obtain

Pr[L outputs this h′] ≤ Pr[all m samples are consistent with h′] ≤ (1 − ε)m. (1)

The second inequality follows from our definition of h′: the m samples are drawn independently
according to D, and on each sample, h′ differs from c with probability at least ε.

Taking the union of all such possible bad hypotheses, we obtain in Equation (2) an upper bound
for failure, which we wish to be at most δ.

Pr[L fails] ≤ |Hn| · (1 − ε)m < δ. (2)

Thus it suffices to find m ≥ 1

ε (log |Hn|+log 1

δ). Since log |Hn| = O(n·log n), m = poly(n, log 1

δ , 1

ε).
Therefore, because (as the reader can show) processing each individual sample can be done effi-
ciently, this upper bound on m demonstrates that L is an efficient PAC-learning algorithm.

3

We point out that a general PAC-learning algorithm exists for any PAC-learnable class that is
simply a generalization of the above algorithm. In the next subsection, we define a quantity that
will allow us to improve the number of samples used by the decision-list algorithm and generalize
it to other concept classes.

2.2 VC-Dimension

Definition 4. PHn
(k) is the maximum over all sets of unlabeled samples (ξ1, . . . , ξk) of the number

of different vectors of the form (h(ξ1), . . . , h(ξk)) with h ∈ Hn.

In other words, PHn
(k) is the number of hs which form distinct characteristic vectors over a set

of k samples, maximized over all such sets. Using this we define the VC-dimension 1 of hypothesis
class Hn:

VC-dim(Hn) = max
m

(PHn
(m) = 2m) (3)

In words, this quantity is the largest m for which all possible characteristic vectors of length
m may be realized by choosing the appropriate hypotheses from Hn. This quantity may be small
even if |Hn| is large. As an example we consider perceptrons.

A perceptron is a linear threshold function within d-dimensional real space, outputting a 1 if
some linear combination of the inputs is at least some threshold value, and 0 otherwise:

∑d
i=1

aixi ≥
t. The VC-dimension of this class is the maximum number of points for which all possible settings
may by classified appropriately. For perceptrons VC-dim(Hn) = d + 1; see Figure 2 for details for
the case d = 2. As we will see a bit later, this means that while in principle the number of patterns
from k samples is bounded by 2k, in fact this bound is a polynomial in k of degree d + 1.

+

+

-

-

+

-

-

-

+

+

Figure 2: For m = 2, any possible setting may be realized by a single linear boundary. Convince
yourself that this is true for m = 3. For m = 4, the setting on the right cannot be classified by a
single line (we leave this as an exercise). Thus VC-dim(perceptrons in R2)=3.

2.3 Improving PAC-Learning for Decision Lists

We showed in 2.1 that using m = 1

ε (log |Hn| + log 1

δ) is sufficient for PAC-learning the concept
class of decision lists. This bound comes from Equation 2 , where the |Hn| term is present as an
upper bound on the number of distinct h that could be output using m samples. We can lower the
number of samples needed by getting a tighter bound for the latter quantity. It turns out that this

1VC stands for Vapnik-Chervonenkis, so the letters VC have no particular meaning.

4

quantity is upper bounded by PHn
(2m), a fact we do not prove here. Given this unproven fact, our

goal is to upper bound PHn
(2m), and then we can replace the |Hn| term above with this value.

Obviously the maximum possible value of PHn
(2m) is 22m, but depending on the hypothesis class

the value may be much smaller. The argument that PHn
(2m) bounds the number of nonequivalent

hypotheses over a sample size of m is non-trivial, but it should be obvious that this number is an
improvement over |Hn|. PHn

(2m) can be bounded by the VC-dimension of the hypothesis class,
VC-dim(Hn) defined above. Specifically

PHn
(k) ≤

d∑

c=0

(
k

c

)
≤

(
ek

d

)d

where d = VC-dim(Hn). (4)

The log of this term is d log k, which replaces log |Hn| in the value of m above.

2.4 A General PAC-Learning Algorithm

Given the analysis above, we can give a general PAC-learning algorithm. Recall that the learning
algorithm for decision lists was to obtain a number of samples and output a hypothesis consistent
with those samples. The same analysis given there applied to the general case shows that m =
O(1

ε (VC-dim(Hn) log 1

ε + log 1

δ)) samples suffice. The general PAC-learning algorithm, then, is as
follows.

1. Query the sample oracle m times.

2. Output a hypothesis h ∈ Hn consistent with those samples.

At the same time, a lower bound, which we do not prove here, is known which shows that
Ω(1

ε (VC-dim(Hn) + log 1

δ) samples are needed for this algorithm. This shows that the general
algorithm given above is essentially tight with respect to the number of samples needed.

We point out that this PAC-learning algorithm assumes that finding a consistent hypothesis
can be done efficiently. This may not always be the case, as described in the next section.

2.5 Complexity of the Consistency Problem

Up to now we have argued from an information-theoretic perspective. Complexity-theoretic argu-
ments deal with Step 2 above - finding a consistent hypothesis.

If P = NP and H is polytime computable, the consistency problem is trivial (guess the hy-
pothesis and verify that it is consistent). We can also show that for some simple examples the
consistency problem can be NP-hard, depending on the choice of the hypothesis class. Finding
a consistent hypothesis for H = C = {DNF formulas with ≤ 3 clauses (i.e., disjunctions of at
most three conjunctions, with the conjunctions being unbounded in size)} is NP-hard, for example.
Using distributivity such a formula can be expanded into 3-CNF form; the relaxed version with
H = {3-CNF formulas} is easy. The important point here is that for some concept classes proper-
learning is difficult, but learning the same concept class with a somewhat larger hypothesis class
H can be much easier.

As mentioned last lecture, if one-way functions exist then we can’t efficiently PAC-learn Cn,s =
{circuits of size ≤ s} by any H. This follows from the fact that if one-way functions exist we can
construct pseudorandom bit generators, and pseudorandom function generators. Given a pseudo-
random function generator as the concept c, the learner must construct a hypothesis which predicts

5

the output of c on the next sample. By the definition of pseudorandom generators this cannot be
done by computationally limited processes.

2.6 Notes on PAC-learning

• In our definition we required our algorithm to work for any choice of (δ, ε). As we saw with
randomized algorithms we can relax restrictions on error rate and boost the result through
multiple applications of the algorithm. The same is true for PAC-learning; given the following
settings of δ and ε we can reach any arbitrary degree of confidence and accuracy.

δ = 1 −
1

poly(n)
(5)

ε =
1

2
−

1

poly(n)
(6)

Confidence can be boosted in a similar way that was used for error reduction with randomized
algorithms: by generating a large number of hypotheses h, then testing each on samples taken
from the distribution, estimating the accuracy of each using the Chernoff bound, and choosing
the best.

• Reducing the error of the algorithm does not follow from a simple use of the techniques for
error reduction of randomized algorithms, but with more work we can also reduce the error
of the learning algorithm. The key intuition is that our PAC-learning algorithm is required
to perform correctly for all distributions D, not just the one being learned. We can exploit
this by taking our hypothesis h and re-weighting the distribution to place equal weight on
the inputs for which h performs correctly and those for which it fails. Running the PAC-
algorithm on this new distribution will provide new information. After enough iterations of
this procedure we output a weighted majority vote of all the hypotheses. Arguing that this
boosting procedure works is non-trivial.

• In an agnostic learning setting (one with no underlying C) there is no guarantee that the
concept c exists within our hypothesis class H. The best we can hope for is to get a hypothesis
as close to c as possible within H, with some margin of error. We look for error at most ε
plus the minimum distance between H and c.

The generalized PAC-learning algorithm given in 2.2 may be used in this setting with one
modification: rather than output h consistent with all m samples, we output an h which
is as consistent as possible given H. Finding this consistent hypothesis becomes much more
complicated, even for simple problems. For example with H = {conjunctions} the consistency
problem is NP-hard.

• One unrealistic assumption made by our PAC algorithm is that the samples received from
the oracle are completely error-free. Errors could occur on the labels or the inputs themselves
(which may be inconsistent with D), and may occur due to noise, or maliciousness on the
part of some attacker. The simplest error-aware model to which PAC-learning work has
been extended is one which allows random classification noise. Formally we assume that for
every possible input, the label is flipped with probability ζ < 1

2
independently for each input.

6

Clearly the closer ζ is to 1

2
the more difficult the learning problem becomes. The running

time of an efficient PAC-learner becomes poly(n, s, 1

ε , 1

δ , 1
1

2
−ζ

).

Statistical query algorithms are a class of algorithms which work in this setting. Rather than
query a sample oracle, statistical query algorithms ask the teacher for an approximation for
the probability that a certain predicate holds with respect to D. For example, one valid query
asks for the probability over D that the label is the parity of the input bits.

Many learning algorithms can be cast in this framework; any algorithm that can will be robust
in a setting with random classification noise.

3 Learning with respect to the Uniform Distribution

For every PAC-learnable class, any PAC-learning algorithm will function under any possible distri-
bution D. Certainly this is not reasonable for all problems, but we can typically devise algorithms
that do function with respect to a particular distribution –a natural choice is the uniform dis-
tribution. Here again we may make use of the techniques of harmonic analysis, which is helpful
for learning concepts whose Fourier transform is concentrated on a few coefficients. By Parseval’s
inequality, the sum of the squares of the Fourier transform coefficients of a Boolean function is 1.
It may be that the 2n coefficients have uniform values, or there may be a few large ones; in this
case, there is a learning algorithm that works with respect to the uniform distribution.

This holds for decision trees, for example, and for constant-depth circuits. Recall that earlier
in the course we proved that such circuits can be approximated well by low-degree multivariate
polynomials. Also, the Fourier transform corresponds to expressing the function as a linear com-
bination of characters that are basically parity functions over certain subsets (of inputs). These
parity functions can be made products by choosing {−1, 1} rather than {0, 1} as the bit settings.
So constant-depth circuits can be approximated well by linear combinations of characters corre-
sponding to small subsets.

We will now see how to efficiently learn with respect to the uniform distribution in these cases
by making use of membership queries.

3.1 A Learning Algorithm using List Decoding

Suppose our concept class C has a power spectrum that is concentrated over a few coefficients. It
turns out that the list-decoding algorithm for the Hadamard code can be used as a component in a
learning algorithm L for C. Let us view the concept c as a function f : {±1}n → {±1}. Recall that
when applied to the characteristic sequence of f , the Hadamard list-decoding procedure gives a list
of all information words with a Hadamard encoding within a distance 1/2− ǫ of f , and it does this
in poly(n, 1/epsilon) time. Since the characteristic sequence of χg equals the Hadamard encoding
of g, we have a list of characters χg that with high probability includes all those characters such

that Prx[χg(x) = f(x)] ≥ 1/2+ ǫ. Using the equality f̂(g) = 2Pr[f(x) = χg(x)]−1, we then obtain
a bound on the size of the Fourier coefficients and conclude that our list of characters includes all
those such that f̂(g) ≥ 2ǫ. So we know that given some threshold τ , all Fourier coefficients with
absolute value at least τ can be found in time poly(n, 1

τ).
Note that using the list-decoding algorithm to determine the large-weight coefficients requires

evaluating the received word at specific points we choose. Therefore, the learning algorithm will
need to be able to make membership queries. We now present the learning algorithm L for f .

7

(1) Generate l, a list of indices of all Fourier coefficients whose absolute value is at
least τ using the Hadamard list-decoding algorithm, with the characteristic
sequence of f as the ”received word.”

(2) For each y ∈ l, estimate f̂(g) = 2Pr[f(x) = χg(x)] − 1 by picking a polyno-
mial number of points at random, and let αy be this approximation. Ensure
that with high probability it is within η of the true value.

(3) Recall that

f(x) =
∑

y

f̂(y)χy(x). (7)

We then define an approximation g of f as

g(x) =
∑

y∈l

αyχy(x). (8)

We consider this an approximation since we have dropped some of the small
coefficients of f and approximated the others. If, as we have assumed, most
of the weight is concentrated on a few large coefficients, this will be a good
approximation.

(4) Output h(x) = sign(g(x)). We do this since g works over the set of real
numbers, and so might not be a Boolean function, but h is.

Now it only remains to find a reasonable setting for τ and to show that the algorithm will
succeed with a certain probability. Since τ determines the running time of the algorithm, the
complexity of it also depends on τ , so we find an implicit upper bound on the length of the list l.

So consider the inputs x for which h(x) 6= f(x). Then the difference between g(x) and f(x)
is at least one. We square this difference to obtain an absolute value and then apply Markov’s
inequality to show that

Pr[h(x) 6= f(x)] ≤ Pr[(g(x) − f(x))2 ≥ 1] ≤ Ex[(g(x) − f(x))2]. (9)

We then use Parseval’s inequality and the linearity of the Fourier transform to find that

Pr[h(x) 6= f(x)] ≤ Ex[(g(x) − f(x))2] =
∑

y

̂(g(y) − f(y))
2

=
∑

y

(ĝ(y) − f̂(y))2. (10)

Now we divide the last sum between those in l and those that outside it. For those in l the
coefficient is αy, a good approximation to f̂(y) to within η. For those outside, ĝ(y) is zero. So we
have

Pr[h(x) 6= f(x)] ≤ η2|L| +
∑

y 6∈L

(f̂(y))2. (11)

Since this depends only on f , we can make use of the concentration of the power spectrum to
set τ appropriately so as to make that term small.

As mentioned above, similar PAC-learning algorithms can be created for decision trees and for
constant-depth circuits. We present these as exercises for the reader, but also work out analyses
for them below.

8

3.2 Exercise 1: Decision Trees

Consider decision trees as a specific example. We will need a result relating the Fourier spectrum
of a function f and its representation as a decision tree.

Exercise 1. If f is computed by a decision tree T of size s, then
∑

y |f̂(y)| ≤ #leaves of T ≤ s.

Now suppose we apply the learning algorithm using list-decoding described above. We first
want to bound the error term of

∑
y/∈L(f̂(y))2. Since we know that |f̂(y)| ≤ τ for all y 6∈ L, the

exercise implies the following:

∑

y 6∈L

(f̂(y))2 ≤ τ ·
∑

y 6∈L

|f̂(y)| ≤ τ · s. (12)

To have error at most ε, we want to set τ and η so that τ · s ≤ ε
2

and η2|L| ≤ ε
2
. We achieve

the former by setting τ = ε
2s . From this we know that |L| is polynomial in n, s and 1

ε . To

ensure the latter, we set η =
√

ε
2|L| . Recall that η is the maximum error we want to allow on the

approximations we calculated for the Fourier coefficients. Using a Chernoff bound, we can achieve

η =
√

ε
2|L| with poly(|L|, 1

ε) samples.

We conclude that the algorithm, which uses membership queries to run the list-decoding algo-
rithm, has error at most ε and runs in poly(n, s, 1

ε) time.

3.3 Exercise 2: Constant-Depth Circuits

Constant-depth circuits also have the property that their Fourier spectrum is concentrated on a
small number of coefficients. This will allow us to make use of the above analysis to give a learning
algorithm for constant-depth circuits. The key difference is that we will not need to use the list-
decoding algorithm to generate the list containing large coefficients, so the learning algorithm will
only require samples and not membership queries. The intuition is that because constant-depth
circuits cannot even approximate parity, the characters with large Hamming weight must have small
coefficients (otherwise, the function would have high agreement with parity over the bits indexed
by that character). The list of coefficients with large weight, then, will just be the list of coefficients
corresponding to characters with small Hamming weight.

We now give the analysis. Let f be a Boolean function on n variables computed by a depth d
unbounded fanin circuit of size s. In the lecture on constant-depth circuits, we constructed a low-
degree approximation of f as a step towards proving circuit lower bounds for parity. In particular,
we constructed a Boolean function g′ computed by a polynomial over GF (3) of degree ∆ ≤ (2t)d

such that
Pr[f(x) 6= g′(x)] ≤

s

3t
.

This implies that

Ex[(f(x) − g′(x))2] ≤ 4
s

3t
, (13)

which is in a form that is useful for applying Fourier analysis. But to use Fourier analysis, we want a
polynomial over R rather than GF (3). The polynomial g′ was constructed using the approximation
method. Using the switching lemma method instead, g′ can be constructed with the same properties
mentioned above but over R. Let L be the set of binary y’s with Hamming weight ∆ ≤ (2t)d. This

9

is our list of characters with large coefficients, so we want to show that characters outside of L have
small coefficients. We have the following

∑

y/∈L

(f̂(y))2 =
∑

y/∈L

(f̂(y) − ĝ′(y))2 ≤
∑

y

(f̂(y) − ĝ′(y))2, (14)

where ĝ′(y) = 0 for y /∈ L because g′ can be expressed as a polynomial over R of degree at most
(2t)d. Now (14) is in a form we have seen earlier, so using (13) we get

∑

y

(f̂(y) − ĝ′(y))2 = Ex[(f(x) − g′(x))] ≤
4s

3t
.

We ensure this is at most ε
2

by setting t = Ω(log s
ε). Setting η =

√
ε

2|L| implies that the RHS of

(11) is at most ε.
We have given the analysis, so we recap the learning algorithm and see how efficient it is.

We set t = Θ(log s
ε) and let L be the set of characters with a Hamming weight at most ∆ =

(2t)d = Θ((log s
ε)

d). Once we have L, we proceed from the second step of the learning algorithm
in Section 3. The analysis there and here shows that we get an approximation with error at
most ε. The running time and number of samples needed by the algorithm are poly(|L|, n, 1

ε). As

|L| =
∑

∆

d=0

(
n
d

)
≈ n∆, the running time of the learning algorithm is quasi-polynomial for polynomial

size constant-depth circuits. However, recall that the algorithm we have given only requires samples
and not membership queries.

For the specific case of depth d = 2, meaning circuits of DNF or CNF form, there does ex-
ist a polynomial time algorithm for learning with respect to the uniform distribution which uses
membership queries and Fourier analysis.

4 Next lecture

In the next and final lecture, we briefly introduce quantum computing, defining the quantum model
as a variant of the probabilistic model, presenting a common technique in the design of quantum
algorithms, and giving some currently known upper bounds on the power of the quantum model.

10

