
CS 710: Complexity Theory 5/6/2010

Lecture 30: Quantum Effects

Instructor: Dieter van Melkebeek Scribe: Seeun William Umboh

Today we will take a quick look at the quantum computing model. We will define the quantum
model of computing as a variant of the probabilistic model of computing, present a common tech-
nique in the design of quantum algorithms, and give currently known upper bounds on the power
of quantum computation.

1 Motivation

Quantum computation presents a challenge to the Strong Church-Turing Thesis, which says that
every physically realizable computing device can be efficiently simulated by the Turing machine
model presented in the first lecture. It is not clear at this point that problems solvable in polynomial
time on quantum computers can be solved in polynomial time on deterministic Turing machines or
randomized machines. One reason is that we know how to factor efficiently on quantum machines
but not on classical machines. However, the consensus in the community is that quantum computers
cannot solve NP-complete problems and some even think that there is an efficient classical factoring
algorithm. Another caveat is that it is still uncertain whether quantum computers are actually
physically realizable.

2 Idea

We would like to exploit quantum effects to solve computational problems more efficiently, in terms
of time. The key idea for search problems is that we would like to use quantum interference in
such a way that the “good” solutions interfere constructively and the “bad” solutions interfere
destructively. So, in the end, only the “good” solutions remain.

3 Turing Machine Models

3.1 Probabilistic

It is useful to relate the quantum model to the probabilistic model by viewing the probabilistic
model from the perspective of Markov chains. We give an alternate definition of the probabilistic
model, and then define the quantum model.

Definition 1 (State). We represent the state of the probabilistic machine as a probability distribu-
tion over configurations using the “ket” notation:

∑

c

pc|c〉

where
∑

c pc = 1, pc ∈ [0, 1]. pc is the probability of being in configuration c and |c〉 is the column
vector with zeros everywhere except a 1 at the position representing the configuration c. c runs over
all configurations.

1

Definition 2 (Computation). The computation on a probabilistic machine consists of 2 phases:

• A sequence of local(acting only on a few bits, such as the tapehead, state, etc) linear 1 transfor-
mations that transform a probability distribution into a probability distribution, i.e. stochastic
matrices, induced by the transition function δ 2:

δ : Q × Γk × Q × Γk × {L,R} → [0, 1]

• Final observation of part of configuration C:

Pr[ANSWER is y] =
∑

c

pc

where c runs over all configurations giving the answer y.

From the Markov chain view, at each point in time, the state of the machine is a superposition
of all possible configurations, represented by the column vector

∑

c pc|c〉. Note that the set of single-
configuration vectors {|c〉}c then forms a basis for the linear space, over R, of all state vectors. Then,
at the end of the computation, we observe the output bit(s) and the probability of observing, say
1, is the probability that the machine is in some configuration giving the output 1. This is so far
merely a rephrasing of the probabilistic model we presented in an earlier lecture. Now we move on
to the quantum model.

3.2 Quantum

Definition 3 (State). The state of a quantum machine is defined as a linear superposition of all
possible configurations c

∑

c

αc|c〉

where αc ∈ C,
∑

c |αc|2 = 1.

Definition 4 (Computation). The computation on a quantum machine consists of 2 phases:

• A sequence of local(acting only on a few bits, such as the tapehead, state, etc) linear transfor-
mations that transform a vector v with ‖v‖2 = 1 into a vector v′ with ‖v′‖2 = 1, i.e. unitary
matrices, induced by the transition function δ:

δ : Q × Γk × Q × Γk × {L,R} → C

• Final observation of part of configuration C:

Pr[ANSWER is y] =
∑

c

|pc|2

where c runs over all configurations giving the answer y.

1We would like the transformation to depend on the configuration not on the overall distribution.
2We usually require the transition probabilities to be efficiently approximable, for example the rationals, to avoid

dealing with machines with say, the halting sequence as a transition probability.

2

Here, we view the state of the quantum machine as a wave function. The coefficients, called
amplitudes, are vectors in the imaginary plane with length at most 1. The fact that the amplitudes
can be negative, allowing destructive interference, is what underlies a lot of the power in quantum
computing. Also, note that the probability of being in a particular configuration is now the square
of the absolute value of the amplitude associated with it.

One issue we need to consider is that the condition that the matrices induced by δ be stochastic
or unitary imposes restrictions on the set of allowable transition functions. In the probabilistic
setting though, we only need that the transition function be “stochastic”. That is, for a fixed
configuration, the sum of the probabilities of the configurations it can move to in one step is 1. In
particular, we can show that setting the transition probability to be either 1, 0 or 1/2 is enough.
In the quantum setting, the natural thing to do is to have δ be “unitary”, in the appropriate sense.
However, it turns out that δ has to satisfy some orthogonality conditions as well. These conditions
are unnatural and so instead of considering quantum machines as Turing machines during algorithm
design, we prefer to think in terms of circuits.

4 Circuit Models

We now define circuit models for both probabilistic and quantum computations. In order to satisfy
the above conditions, we would like the gates to act on a finite number of bits, in particular it is
sufficient that they act on at most 3 bits, and to induce stochastic(unitary) matrices. To this end,
we define the following notions:

• The register is the analogous notion of Turing machine configuration in the circuit model. The
contents of the register reflect the results of the computation so far. We retain the notation
|xo . . . xm〉 to denote the contents of the register.

• The state of a register is represented as a probability distribution(linear superposition) over
all possible contents of the register. Again, we note that the set of vectors {|c〉}c form a basis
for the linear space, over the reals(complex numbers), of all state vectors.

• An operation G on an m-bit register is specified by a linear stochastic(unitary) transformation
F : R

23 → R
23

(F : C
23 → C

23

) acting on 3 distinct bits with indices j, k, l ∈ {1, . . . ,m},
leaving others unmodified, such that for every x1, . . . , xm ∈ {0, 1}, applying G on |x1, . . . , xm〉
gives |y1, . . . , ym〉 where |yjykyl〉 = F (|xjxkxl〉).

• A computation consists of a sequence of operations followed by a final observation of the
register.

Note that the operations can be represented by stochastic(unitary) matrices, hence the models
defined satisfy that condition.

For uniformity, we can simply require that a single Turing machine can compute the operation
at step i, for all i. In addition, for the T (n)-time bounded versions of these models, we require that
the Turing machine take time at most T (i) to compute the operation at step i.

4.1 Probabilistic

For the probabilistic model, it is sufficient to have classical AND, OR and NOT gates to simulate
deterministic computation, and a coin flip gate to allow access to a fair coin.

3

4.1.1 Deterministic Gates

The AND, OR and NOT operations are defined by the transformations F,G,H with F |xyz〉 =
|xy(x ∧ y)〉, G|xyz〉 = |xy(x ∨ y)〉,H|x〉 = |x̄〉, respectively. The matrix for AND is:

F =

























1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1

























Remember that the input bits are unaffected by the gate, and since we multiply F from the
right, Fi,j denotes the probability of the register having contents |i2i1i0〉 if it started in configuration
|j2j1j0〉 where lk is the kth bit of l, from the right.

4.1.2 Coin Flip Gate

The coin flip gate acts only on one bit and its output is 1 or 0 equiprobably:

C =

[

1
2

1
2

1
2

1
2

]

4.2 Quantum

4.2.1 Deterministic Gates

In the quantum setting, we cannot simply use the matrices for the AND, OR and NOT gates as
above, since they do not preserve the 2-norm. We note first that the 2-norm preserving condition
for a matrix A is equivalent to it satisfying A∗A = I since ||Ax||22 = x∗A∗Ax = x∗x iff A∗A = I.3

Hence, the gate matrices have to be at least invertible. However, the AND and OR gates are not
invertible, as more than one input can map to 0 under AND, for example.

For the deterministic gates to be reversible, they need to induce permutation matrices as de-
terminism requires the matrix to have in every column a 1 in exactly 1 entry, and zero everywhere
else, and reversibility requires the matrix to have in every row a 1 in exactly 1 entry, and zero
everywhere else. We can get around this by introducing additional ancilla bits. Given a boolean
function ϕ : {0, 1}k → {0, 1}, we transform it to the reversible version g : {0, 1}k+1 → {0, 1}k+1,
defined by (x, b) → (x, b ⊕ ϕ(x)).

So now we can apply this transformation to all the gates of any deterministic classical circuit to
obtain a circuit usable by our quantum machine. Given a circuit C computing f : {0, 1}n → {0, 1},
the resulting function after transforming C’s gates is f ′ : {0, 1}n+m+1 → {0, 1}n+m+1, defined by
(x, 0m, 0) → (x, garbage, f(x)), where the number of ancilla bits m is on the order of the number
of gates in C.

Now, we need to have the m ancilla bits set to zero, as otherwise the interference patterns would
be different. In particular, the garbage in the ancilla bits may cause certain computation paths to

3By A
∗, we mean the complex conjugate of A.

4

not interfere when we would like them to. Since simply resetting the bits to zero is an irreversible
operation, we do it by applying f ′ in reverse, and using an extra bit to preserve the result computed
by f ′:

x x

b b f(x)

0
m

f’ (f’)
−1

00

0
m

Figure 1: The schematic for the reversible simulation of f .

The complexity of this reversible simulation, denoted as f̃ , is a constant factor greater than the
complexity for f since we only need to apply the transformation to every gate, and then run the
transformed circuit twice.

Note that this also gives us P ⊆ BQP, where BQP is the class of decision problems solvable
in polynomial on quantum Turing machines. Since the output of a quantum Turing machine is a
random variable, we say that it decides a language L if the probability of deciding correctly the
membership of x in L is at least 2/3.

4.2.2 Hadamard Gate

The quantum analog of the classical coin flip gate is called the Hadamard gate. The matrix for this
gate is

H =
1√
2

[

1 1
1 −1

]

Exercise 1. Verify that the Hadamard matrix is unitary and orthogonal.

The effect of applying this gate to a single bit is:

H|0〉 =
1√
2
(|0〉 + |1〉)

H|1〉 =
1√
2
(|0〉 − |1〉)

5

So, if we observe the bit after applying the Hadamard gate, we get 0 or 1 equiprobably, just
as in a fair coin flip. However, we also have that H2 = I. So, applying the Hadamard gate twice
consecutively in sequence, will give us the original bit, which is not the same result as if we did
the same with the coin flip gate. One way to see this is in terms of interference amongst the
computation paths.

Hence, we can simulate randomized computation by applying the Hadamard gate to some 0s
and then observing those bits. Afterward we can proceed deterministically and use those bits as
random bits. Thus, BPP ⊆ BQP.

5 Illustration of Quantum Power

Even though it is widely believed in the community that interference is not enough to solve NP-
complete problems, we have managed to use interference to efficiently solve certain problems for
which we do not have efficient classical algorithms. An example is factoring, and Simon’s Prob-
lem. While this problem is unnatural, the technique used in solving it underlies many quantum
algorithms such as factoring.

Definition 5 (Simon’s Problem). Given a poly-time length-preserving(it maps strings of length n

to strings of length n) function f : {0, 1}∗ → {0, 1}∗ with the promise that

(∀n)(∃0 6= sn ∈ {0, 1}n)(∀x, y ∈ {0, 1}n)[f(x) = f(y) ⇐⇒ x + y = sn],

where addition is defined as bitwise XOR, find sn on input 0n.

In other words, for strings of length n, the function f is exactly 2-to-1 and the 2 strings that
map to a certain string differ by a shift sn, and we would like to find sn. Also note that this is a
promise problem.

This problem is in the second-level of the Polynomial Hierarchy since we can guess a shift and
then verify for all pairs (x, y) of n-length strings that f(x) = f(y) ⇐⇒ x+y = sn. f is a poly-time
function and we can easily bitwise-XOR x with y and see if we get sn, so the verification can be
done efficiently.

For classical machines, we do not know how to do better than exponential time. Even using
randomness, the best algorithm we have is to guess x and y and see if f(x) = f(y). If we get a
collision, then we can easily determine sn. However, the expected number of trials to get a collision
is exponential.

On quantum machines though, this problem is solvable in polynomial time. We first start off in
the state |0n〉|0n〉, where we would like to use the first n bits to encode all possible inputs for f . We
achieve this by applying the Hadamard gate to each of the n bits. We denote this operation as H⊗n

.
4 So, now we are in the state 1√

N

∑

x |x〉|0n〉, where N = 2n. Then, we apply f̃ with the first n bits

as input bits and the last n bits as the output bits, and get the state 1√
N

∑

x |x〉|f(x)〉. Finally,

we apply H⊗n

to the first n bits again and we leave it as an exercise to verify that we end up in
1
N

∑

x

∑

y(−1)x·y|y〉|f(x)〉, where (·) denotes inner product. We can rewrite this as
∑

y,z αy,z|y〉|z〉,
a linear superposition over all possible contents of both registers.

So, the probability of observing y in the first register is
∑

z |αy,z|2. Now, if z is not in the
range of f , αy,z is 0. Otherwise, z is in the range and f maps exactly 2 strings to it, so αy,z =

4In linear algebra, this is the n-fold tensor product of the Hadamard gate matrix.

6

1
N

[(−1)x·y + (−1)(x+sn)·y] where z = f(x) for some x. Because we can take out the common factor
(−1)x·y, and since if we sum over all n-length strings, we will count each f(x) twice(as f(x) and
f(x + sn)), the probability that a particular y is observed is 1

2

∑

x
1

N2 |1 + (−1)sn·y|2. As there are
2n = N possible x’s, this is then 1

2N
if sn · y = 0 mod 2, and 0 if sn · y = 1 mod 2.

Therefore, the output of this computation y is chosen uniformly at random from those y such
that sn ·y = 0 mod 2. We observe that sn ·y = 0 mod 2 is a linear combination of the components
of y where the coefficients are the corresponding components of sn. This is a linear equation of
n variables over GF(2). So, we can run the above routine an order of n times and collect the
output yi from each run until the equations sn · yi form a homogeneous system of rank n− 1. From
elementary linear algebra, it follows that it has a unique non-trivial solution which is sn.

We have already argued the efficiency of some of the components of the routine: H⊗n

, f̃ . We
also know how to solve homogeneous linear systems of equations efficiently. Lastly, we leave the
fact that we only need on average O(n) runs of the routine as an exercise:

Exercise 2. Verify that with high probability, O(n) runs suffice.

6 Hidden Subgroup Generalization

Definition 6 (Hidden Subgroup Problem). Given a group G and a poly-time f : G → {0, 1}∗, and
the promise that there exists some subgroup H of G such that f(x) = f(y) iff x and y belong to the
same coset of H in G, find generators for H.

There are several familiar instances of this problem:
Example:[Simon’s Problem] The group for Simon’s Problem is G = ({0, 1}n,+), where + denotes
bit-wise XOR. We have f as defined in Definition 5, and so the subgroup we are interested in is
H = 〈sn〉 = {0n, sn}, since x and y belong to the same coset of H iff x = 0n+y = y or x = sn+y. ⊠

This next example is critical for the factoring algorithm, although we do not discuss the factoring
algorithm here..
Example:[Finding Order r of a mod b] Given a, b relatively prime, we would like to find the order
of a mod b. So, we are interested in the group G = (Zb, ·), with (·) denoting multiplication mod b,
and the poly-time function f(x) = ax mod b. Then, H is 〈r〉 since f(x) = f(y) iff r|(x − y). This
can be solved in a way similar to Simon’s Problem but we use a general Fast Fourier Transform
instead of the Hadamard gate, which is just a Fourier Transform over GF(2). ⊠

Example:[Discrete Log] We leave this as an exercise for the reader. ⊠

Example:[Graph Isomorphism] Consider 2 connected graphs G1, G2 on n vertices. In order to
cast this as a hidden subgroup problem, we consider the symmetric group G = S2n on 2n elements,
and the function f(π) = π(G1 ∪ G2) which gives the result of applying the permutation π on the
vertices of the disjoint union of the 2 graphs. So, H is Aut(G1 ∪ G2) since f(π) = f(σ) if and
only if there is some automorphism such that applying the automorphism after applying π gives
the same result as applying σ. Note that the graphs are isomorphic if and only if some generator
of H swaps G1, G2, since we can decompose automorphisms into automorphisms that do not swap
G1, G2 and those that do. Thus, if we can find the generators for H, we can easily determine if the
graphs are isomorphic. ⊠

7

The main technique in the algorithms for some of these examples is Fourier sampling. We set
up a linear superposition of all possible inputs to f in the first register, store the output of f in the
second register, apply an appropriate Fourier transform and then measure the system. However,
this technique only works when the group is abelian, which is the case for factoring, Simon’s
problem, and discrete logarithm. So, in the case of Graph Isomorphism, since the symmetric group
is not abelian, we cannot use the same technique. More specifically, the probability distributions
given by Fourier sampling on positive instances of Graph Isomorphism and negative instances are
indistinguishable.

7 Upper Bounds

Now that we have seen some of the power of quantum computers, we would like to see if we can
upper bound quantum computers. Note that the outcome of a quantum computation depends on
the, possibly negative, amplitudes of paths. Thus, the probability distribution is a GapP function.
Thus, we get that BQP ⊆ P#P[1], and also BQP ⊆ PP(this is a class we will define in a future
lecture).

The biggest open problem on quantum computation in complexity theory is whether or not BQP
is contained within the Polynomial Hierarchy. In the probabilistic setting, approximate counting
was good enough to show containment within the Hierarchy. In the quantum setting however,
the possibility of interference makes it harder to just rely on approximate counting. In fact, it is
conjectured that exact counting is required.

On the physics side, we do not yet know if we can build reliable and scalable quantum computers.
So far, 2 models have been proposed. The first uses the spin of a single electron trapped in a silicon
lattice. This scales up well once we can implement it on a few bits, since silicon is abundant.
However, we are still trying to implement it on those few bits. Another model is the optical lattice.
In this model, the electron is trapped in an optical lattice using lasers. While we have managed
to implement some limited quantum computers using this model, scaling is a problem since the
bottleneck is now laser power.

8 The End

This is the end of the course. If you want to learn more about quantum computing, you can take
CS 880 next semester.

8

