
CS 810: Complexity Theory 2/26/2007

Lecture 17: Worst-Case to Average-Case Reductions

Instructor: Dieter van Melkebeek Scribe: Tom Watson

In the last lecture we discussed some applications of the Nisan-Wigderson pseudorandom gen-
erator, showing that if some language in L ∈ E is sufficiently average-case hard for nonuniform
circuits, then BPP can be efficiently simulated deterministically, where the efficiency of the simu-
lation depends on the hardness of L. We also introduced the idea of using error correcting codes to
allow us to relax our hypothesis from the existence of an average-case hard language to the existence
of a worst-case hard language, and we described a local decoding procedure for Reed-Muller codes.
Today we will discuss the paradigm of list decoding and describe a local list decoding algorithm for
the Hadamard code. Then we will show how local list decoding algorithms can be used to obtain
very strong worst-case to average-case hardness reductions in E. Finally, we will introduce the
notion of randomness extraction.

1 Worst-Case to Average-Case Reductions via Error Correcting

Codes

1.1 Local List Decoding

Suppose there is a language L ∈ E such that no family of small circuits can compute L. Our goal
is to show that then there exists another language L′ ∈ E such that not only can no family of small
circuits compute L′, but no family of small circuits can even succeed in computing L′ on noticeably
more than half the inputs. Our strategy is to consider the characteristic sequence χL|m at some
input length m, which is a string of length 2m, and encode it using a good binary error correcting
code (ECC) to obtain a string of length 2m′

for some m′ that’s not too much larger than m. We will
then interpret the encoding of χL|m as the characteristic sequence χL′|

m′
of some other language L′

at input length m′.
The intuition is that if L′|m′ can be solved on noticeably more than half the inputs by a small

circuit, then the characteristic sequence of the function computed by this circuit can be viewed as
a corrupted version of χL′|

m′
. Then the original information word χL|m could be obtained by an

efficient decoding procedure, allowing us to solve L|m on all inputs.

Our ECC needs to have the following properties.

(1) We want to argue that if L′ is not sufficiently hard, then we can construct a small circuit
computing L. This circuit will be given a string x of length m and required to compute the bit
of χL|m corresponding to that string. However, the “received word” χL′|

m′
is exponentially

longer than x. This seems to be a problem since traditional decoding algorithms need to
look at the entire received word, even to compute a single bit of the information word. We
get around this by using a local decoding algorithm, which, given the index (x, in our case)
of a bit of the information word, computes that bit while only making a few randomized
queries to the received word. In the last lecture we described local decoding algorithms for
the Hadamard and Reed-Muller codes.

1

(2) Since we would like L′ to be hard to solve on even a little more than half the inputs, we
will need to be able to decode a fraction of errors that is as large as 1/2 − ǫ for some small
ǫ. This seems problematic since to be able to correct a fraction η of errors, we need the
(relative) minimum distance of the ECC to be greater than 2η. This would imply that we
need an ECC with minimum distance close to 1, which is a problem since, although we will
not argue it, a distance of 1/2 is the best one can hope for in the case of binary codes. We will
get around this by using a list decoding algorithm, which, given a received word, computes
all information words whose encodings are within a certain distance from it. Since we are
dealing with circuits, we will be able to then nonuniformly select which information word is
the correct one. Naturally, as the fraction η gets closer to half, the number of codewords
within distance η grows, but we will be able to show that this number does not grow too
large. We will describe a list decoding algorithm for the Hadamard code today.

(3) Finally, we will require an efficient encoding procedure for our ECC. We will need to show
that if L is in E, then L′ is also in E, and this will be shown by combining an exponential-time
algorithm for L with an efficient encoding procedure for the ECC. In fact, we would like m′

to be only a constant factor larger than m. This will allow us to show that the average-case
hardness of L′ is quite comparable to the worst-case hardness of L. Our ultimate goal is
to show that if L has linear exponential worst-case circuit complexity, then L′ has linear
exponential average-case circuit complexity, since as we saw previously, the existence of such
an L′ allows us to obtain a quick pseudorandom generator with logarithmic seed length and
conclude that BPP = P.

Properties (1) and (2) indicate that we will need an ECC with an efficient local list decoding

algorithm. We will not give the full details of the necessary construction. All the desired properties
can be realized for the concatenation of the Hadamard code with the Reed-Muller code. A local
list decoder for the Reed-Muller code can be obtained using the local decoding approach discussed
in the last lecture, combined with a list decoder for the Reed-Solomon code. The latter decoder
involves a technical procedure for factoring bivariate polynomials. Today we describe a local list
decoding procedure for the Hadamard code. The local list decoders for these two codes can easily
be combined to form a local list decoder for the concatenation. In Section 1.4, we will show how
this leads to the desired worst-case to average-case reduction.

1.2 Error Correcting Code Constructions

Recall that the Hadamard code is a [2K ,K]2 code that encodes an information word a ∈ {0, 1}K

as the codeword ((a, x))x∈{0,1}K . That is, it takes the inner product of a with every bit string of

length K and outputs the list of all 2K results. The minimum distance of this code is 1/2, which
in the case of binary codes is the best distance one can hope for asymptotically. Although it has a
very good minimum distance, the Hadamard code has a horrible rate and is of no practical value.
However, it is useful in complexity theory. This code can handle up to a 1/4 fraction of errors if
we require unique decoding. This is not good enough to achieve the strong hardness results we’re
after. We will show that by contenting ourselves with list decoding, we will be able to handle a
fraction of errors that is almost half.

The Reed-Solomon code is another useful ECC. It has a minimum distance that is close to 1.
However, it is not locally decodable — we need to query at least K positions of the received word
in order to reconstruct even one position of the information word. Furthermore, the Reed-Solomon

2

code requires that the field size be at least as large as the codeword length, which is undesirable
since we are interested in codes over GF (2). However, we can handle this by concatenating with a
binary code such as the Hadamard code.

The Reed-Muller code is one for which we do have a good local decoding algorithm. Recall that
Reed-Solomon encoding is achieved by interpreting the information word as a low-degree univariate
polynomial and evaluating it at all points of the field, while Reed-Muller encoding is achieved by
interpreting the information word as a low-degree polynomial in ℓ variables (say) and evaluating it
at all ℓ-tuples of field elements. Intuitively, we are packing the information into an ℓ-dimensional
cube. We can then locally decode by picking a random line through the point in the cube where
we want to evaluate the original polynomial, querying the received word at all points along this
line, and using a Reed-Solomon decoder to reconstruct a univariate polynomial corresponding to
the original polynomial restricted to this line. Using a similar approach together with a list decoder
for the Reed-Solomon code, a local list decoder for the Reed-Muller code can be obtained. We will
not explore this result in this course.

Finally, concatenating the Reed-Muller code with the Hadamard code yields a code that satisfies
our desired properties. Concatenating with the Hadamard code allows us to get a binary code, and
the exponential blow-up of the Hadamard code is compensated for by the fact that the field size
required by the Reed-Muller code doesn’t grow too fast. The locally decodability property is the
key for getting a worst-case to average-case reduction The list decodability property is the key for
overcoming the upper bound of 1/2 on the distance of the code in order to acheive very strong
worst-case to average-case reductions.

1.3 Local List Decoding of the Hadamard Code

We develop a local list decoding algorithm for the Hadamard code. We will not need to worry
about the local decoding aspect; this will be a natural feature of our algorithm. Given a received
word r ∈ {0, 1}2K

and an error bound η, we wish to find a list of all information words whose
encodings are within Hamming distance at most η from r. If η < δ/2, where δ is the minimum
distance of the code, then this list can contain at most one information word. As η gets larger, the
list will also naturally get larger, but we want to show that it does not get too large. Specifically,
we wish to be able to handle up to a 1/2 − ǫ fraction of errors in randomized time poly(K

ǫ
). Since

the received word is of length 2K , we clearly need random access to it.

Theorem 1. There is a randomized algorithm that, given random access to a received word r ∈
{0, 1}2K

, runs in time poly(K
ǫ
) and outputs a list of information words that with high probability

contains all a ∈ {0, 1}K such that

Prx∈{0,1}K

[

(a, x) = r(x)
]

≥
1

2
+ ǫ.

That is, it outputs a list of all information words whose Hadamard encodings are at relative distance

at most 1/2 − ǫ from r.

Proof. We focus on obtaining one particular a ∈ {0, 1}K satisfying Prx[(a, x) = r(x)] ≥ 1
2 + ǫ. By

running the procedure a few more times and concatenating the lists, we can get a list that with
high probability contains all information words having the desired level of agreement.

Recall that in the last lecture we described a local unique decoder for the Hadamard code. The
idea was to retrieve the ith bit of a by picking a random x and querying r(x) and r(x + ei) where

3

ei is the string with a 1 in the ith position and 0’s elsewhere. Since we were assuming that the
encoding of a differed from r in at most a fraction of 1/4 − ǫ positions, we were able to conclude
by a union bound that with probability at least 1/2 + 2ǫ, both x and x + ei were positions where r
was correct, in which case r(x) + r(x + ei) = ai. By picking several x’s independently, and taking
the majority vote of the values r(x) + r(x + ei), we were able to obtain the correct ai with high
probability. In the present settting, however, r may be wrong in a fraction of 1/2 − ǫ positions,
so we are only able to conclude that with probability at least 2ǫ, both x and x + ei are positions
where r is correct. Thus obtaining ai using this idea would require too many samples x. We will
now describe a more elaborate approach that uses the power of list decoding to reduce the number
of samples needed.

We focus on retrieving one particular component ai of the information word a. Consider the
following idea. Select x1, x2, . . . , xt ∈ {0, 1}K uniformly at random (for some small t to be deter-
mined later), and obtain 2t − 1 strings by adding together all possible combinations of the xj ’s
(except the empty combination). More formally, for the 2t − 1 nonzero values of c ∈ {0, 1}t, take
the string

yc =

t
∑

j=1

cjxj.

Note that cj is one bit of c, whereas xj is a string of length K. Then yc is just the sum of some
of the xj ’s, namely those corresponding to the locations of the 1’s in c. Now since c is nonzero,
it follows that ei + yc is uniformly distributed. The proof of the following claim follows since the
event under consideration holds whenever ei + yc is an index of a position where r agrees with the
encoding of a.

Claim 1. For all nonzero c, Pr[(a, yc) + r(ei + yc) = ai] ≥ 1/2 + ǫ.

Thus if we knew the values (a, yc) for all c, then we would be able to pick an arbitrary c, query
r(ei + yc), add (a, yc) to the result, and conclude that we had ai with confidence at least 1/2 + ǫ,
which is much better than the 2ǫ we got in our first attempt. In other words, we are circumventing
the inherent unreliability of the two-query approach by assuming we always have the “correct”
answer for one of the two queries. We will show later how we can handle this hypothesis using the
power of list decoding.

Another issue we need to handle is that we would naturally like to boost our confidence by
making not one, but several queries to r. We can just use ei + yc for all choices of c, and take
the majority vote of the values (a, yc) + r(ei + yc). There are 2t − 1 choices for c, and one might
wonder if this means we would have to make too many queries. However, it turns out that t can
be chosen small enough that this isn’t a problem. A more important issue to be alarmed about is
the fact that these 2t − 1 strings are definitely not fully independent; after all, they were generated
using only tK bits of randomness. However, they are pairwise independent. To see this, note that
if c1 6= c2 then there is an index j where they differ. Since c1 and c2 are nonzero we have

Pr[yc1 = z1] = Pr[yc2 = z2] =
1

2K
,

and the equality

Pr
[

(yc1 = z1) ∧ (yc2 = z2)
]

=
1

2K

can be seen by conditioning on the values x1, . . . , xj−1, xj+1, . . . , xt.

4

It turns out that pairwise independence is good enough.

Claim 2. For all i,

Pr[MAJi 6= ai] ≤
1

2tǫ2

where MAJi = majority(bi,c : c 6= 0t) and bi,c = (a, yc) + r(ei + yc).

Proof. Let Xi,c be the indicator random variable for the event that bi,c = ai, i.e. our guess for ai

is correct when we use c. In order for MAJi 6= ai to happen, it needs to be the case that

1

2t − 1

∑

c 6=0t

Xi,c ≤
1

2
.

However, by Claim 1 we know that E[Xi,c] ≥ 1/2 + ǫ for all c 6= 0t, and thus E[1
2t−1

∑

c 6=0t Xi,c] ≥
1/2 + ǫ by linearity of expectation. It follows that

Pr[MAJi 6= ai] ≤ Pr

[

∣

∣

∣

∣

1

2t − 1

∑

c 6=0t

Xi,c − E
[1

2t − 1

∑

c 6=0t

Xi,c

]

∣

∣

∣

∣

≥ ǫ

]

.

Since the Xi,c’s are pairwise independent for each i, we can apply Chebyshev’s inequality and the
fact that every indicator random variable has variance at most 1/4 to conclude that

Pr[MAJi 6= ai] ≤
σ2

(

1
2t−1

∑

c 6=0t Xi,c

)

ǫ2

=
1

(2t − 1)2

∑

c 6=0t σ2(Xi,c)

ǫ2

≤
1

(2t − 1)2
2t − 1

4ǫ2

≤
1

2tǫ2
.

Now by a union bound, the probability that there exists an i such that MAJi 6= ai is at most
K

2tǫ2
. This can be made at most 1/2 by choosing

t = Θ
(

log
K

ǫ2

)

.

To summarize the algorithm up to this point, we first choose x1, . . . , xt ∈ {0, 1}K uniformly
at random. We then recover each bit ai separately (this will allow for local decoding) by forming
the 2t − 1 queries r(ei + yc) corresponding to different c’s, for each query guessing that ai equals
bi,c = (a, yc) + r(ei + yc), and taking the majority vote over all these guesses bi,c. As argued above,
we succeed in recovering the information word a correctly with probability at least 1/2 over the
choice of x1, . . . , xt. Since recovering each position ai involves 2t − 1 = poly(K

ǫ
) queries, the entire

procedure runs in time poly(K
ǫ
), as desired.

However, there is one critical issue we have yet to resolve — the entire procedure assumed we
knew the values (a, yc) for all c, which seems ridiculous since a is what we’re trying to find! This is

5

where list decoding comes in: since our algorithm needs a sequence of values ((a, yc))c 6=0t , we can
try all possibilities for this sequence, run our algorithm for each possibility, and output the list of
all information words obtained. Then with probability at least 1/2, a appears on the list (namely,
it appears when we try the correct values for the sequence ((a, yc))c 6=0t).

There is a problem with this, however: there are 2t−1 different c’s, leading to 22t−1 possibilities
and making the running time exponential in K

ǫ
. This is easily remedied by recalling that the inner

product is linear, and so

(a, yc) = (a,

t
∑

j=1

cjxj) =

t
∑

j=1

cj(a, xj).

Thus the 2t −1 values (a, yc) are uniquely determined by the t values (a, xj). It follows that we can
reduce our list to size 2t = poly(K

ǫ
), since we only need to try all possible values for the sequence

((a, xj))j . The overall running time remains poly(K
ǫ
).

This explains why we didn’t choose 2t − 1 strings x independently but rather chose t strings
and looked at all combinations of them: with the former approach our list would have been too
long — on the order of 22t

entries — whereas with the latter approach we can get by with a list
size of 2t at the expense of having our 2t − 1 samples be only pairwise independent, which as we
argued above, is not a big problem.

As with the local decoding algorithm discussed in the last lecture, the basic idea of the above
proof is to try to recover ai by querying a random location in the received word, querying the
location whose index has the ith bit flipped, and XORing the results. In the present setting there
are too many errors in the received word for this to be reliable. One key idea is that we can
drastically increase the reliability if we know that one of the two queries is uncorrupted. Since
unique decoding is not required, we can try all possibilities for the “correct” values of these queries.
The other key idea is that we can keep the list size small by only choosing a small number of query
locations, and deterministically generating the rest of the query locations by adding together all
possible combinations. Chebyshev’s inequality allows us to conclude that the reliability doesn’t
deteriorate too much when we do this.

As a corollary to the above result, we note that for all received words r, the number of infor-
mation words a whose Hadamard encodings agree with r on at least a 1/2 + ǫ fraction of positions
is bounded by poly(K

ǫ
), the running time of the algorithm.

Finally, we note that the list output by our decoding algorithm may contain information words
whose encodings do not have the 1/2 + ǫ agreement with the received word. We can try to weed
these out by randomly querying r to ensure that with high probability, r agrees with the encoding
in at least a fraction 1/2 + ǫ − ǫ′ locations, for some small ǫ′.

1.4 Worst-Case to Average-Case Reductions

With the Hadamard decoder described in the previous section and a local list decoder for the
Reed-Muller code, one can obtain a local list decoder for the concatenation of the two codes. The
precise result is stated below, without proof.

Theorem 2. For each ǫ > 0 and K there exists an error correcting code with the following prop-

erties. There is a polynomial-time encoder mapping information words of length K to codewords

of length poly(K). The codeword length can be assumed to be a power of 2 when K is. There is

6

a randomized algorithm that runs in time poly(K
ǫ
) and outputs a list of randomized oracle Turing

machines M1,M2, . . . that take as input a position in the information word, have oracle access to

the received word, and run in time poly(log K
ǫ

). These machines have the property that for all re-

ceived words r and all information words w such that r agrees with the encoding of w in at least a

fraction 1/2 + ǫ positions, there exists an i such that M r
i computes w.

We now show how to use Theorem 2 to get worst-case to average-case reductions.

Theorem 3. For every L ∈ E there exists a language L′ ∈ E such that

HL′(m) ≥
CL(m)Ω(1)

mO(1)
.

Proof. Let L be a language in E. Applying the ECC from Theorem 2 to χL|m yields a string of

length 2m′

for some m′ = O(m). We define χL′|
m′

to be this string. We can solve L′ in E by taking
an input of length m′, computing the corresponding length m < m′, explicitly writing out χL|m ,

encoding it, and extracting the bit corresponding to our input. Writing out χL|m takes 2O(m′) since

there are 2m positions, each of which can be computed in 2O(m) time since L ∈ E. Encoding χL|m

takes 2O(m′) time since the ECC from Theorem 2 is polynomial-time encodable. Solving L′ incurs
an exponential factor blowup in running time, which doesn’t take us out of E, but does prevent us
from using this technique to get worst-case to average-case reductions for smaller classes.

We will show that

HL′(m′) ≥
CL(m)Ω(1)

mO(1)
,

and the theorem will follow from the fact that m′ = O(m) (and the fact that CL(m) is at most
exponential, and so changing the input length by a constant factor only makes CL(m) change by a
polynomial factor).

Set ǫ = 1/CL(m)α for some α to be determined later. Suppose there exists a circuit of size s′

that, given an input of length m′, computes the corresponding bit of χL′|
m′

for at least a 1/2 + ǫ
fraction of inputs. Now for some i, the machine M r

i from Theorem 2 takes an input of length m
and outputs the corresponding position of χL|m with high probability, i.e. it solves L, provided r

is a string of length 2m′

that agrees with χL′|
m′

on at least a 1/2 + ǫ fraction of positions. This
probability may be amplified so that there there is some choice of randomness for which M r

i solves
L on all inputs of length m. By hard-wiring this choice of randomness, we can obtain an oracle
circuit of size (m

ǫ
)O(1) solving L at input length m. All its oracle gates are queries to χL′|

m′
and can

thus be replaced by our hypothesized circuit of size s′. By Theorem 2, this circuit of size (m
ǫ
)O(1) ·s′

computes L exactly provided the oracle subcircuit solves L′ on at least a 1/2+ ǫ fraction of inputs,
which it does by hypothesis. We conclude that

CL(m) ≤
(m

ǫ

)β

· s′,

for some constant β ≥ 1 (and sufficiently large m). It follows that every circuit of size less than

CL(m)1−αβ

mβ

7

succeeds in computing L′ at length m′ for less than a

1

2
+

1

CL(m)α

fraction of inputs. This implies that

HL′(m′) ≥ min
(

CL(m)α,
CL(m)1−αβ

mβ

)

.

If 1 − αβ < α, i.e. α > 1
β+1 , then the second term definitely dictates the minimum, so choosing

α < 1
β

gives the desired result

HL′(m′) ≥
CL(m)Ω(1)

mO(1)
.

Corollary 1. If there exists a language L ∈ E with CL(m) ≥ mω(1) then there exists a language

L′ ∈ E with HL′(m) ≥ mω(1) and thus there exists a quick PRG with subpolynomial seed length,

implying that BPP ⊆ SUBEXP.

Corollary 2. If there exists a language L ∈ E with CL(m) ≥ 2mΩ(1)
then there exists a language

L′ ∈ E with HL′(m) ≥ 2mΩ(1)
and thus there exists a quick PRG with polylogarithmic seed length,

implying that BPP ⊆ DTIME(nlogO(1) n).

Corollary 3. If there exists a language L ∈ E with CL(m) ≥ 2Ω(m) then there exists a language

L′ ∈ E with HL′(m) ≥ 2Ω(m). and thus there exists a quick PRG with logarithmic seed length,

implying that BPP = P.

2 Randomness Extraction

We have seen evidence that randomness is not very powerful in terms of reducing the complexity
of solving decision problems. We have seen an unconditional pseudorandom generator that fools
space-bounded computations, and a conditional pseudorandom generator that fools time-bounded
computations under the hypothesis that there exists a language in E requiring linear exponential
size circuits. It is conjectured that using randomness can only lead to a polynomial factor savings
in time and a constant factor savings in space. This does not mean that randomness is useless in
practice. On the contrary, a quadratic speedup achieved with randomness may be very attractive
in practice. Additionally, many randomized algorithms are simpler and easier to implement than
deterministic algorithms for the same problems.

We now turn to a different question. Most randomized algorithm assume access to a perfect
source of unbiased, and more importantly uncorellated, random bits. How do we run such algo-
rithms with access to an imperfect random source? The goal of randomness extraction is to take
samples from a weak random source — one where samples may not be uniformly distributed —
and generate samples that are close to being uniformly distributed. Such weak random sources will
be our models for physical sources of randomness, such as keystrokes or delays over networks.

An extractor is an efficient procedure for taking a sample from such an imperfect source and
“extracting” the randomness from it, producing an output string that is shorter but much closer

8

to being uniformly distributed. Such a procedure can be used to run randomized algorithms with
weak random sources. The fact that the output distribution of an extractor is only “close” to
uniform will have only a small effect on the output distribution of the randomized algorithm.

Before we embark on the task of constructing an extractor, we need to formalize what we
mean by the “amount of randomness” contained in our weak random source, and by “closeness to
uniform” of the output distribution obtained by applying our extractor to our weak random source.
For the latter, we will use the standard measure of statistical distance. For the former, one idea is
to use the measure of entropy from physics.

Definition 1. The entropy of a discrete random variable X is

H(X) = E
[

log
1

pi

]

=
∑

i

pi log
1

pi

where the sum is over the range of X, and pi = Pr[X = i].

However, this measure of randomness does not work in our setting. Indeed, suppose that the
range of X is {0, 1}m and that for nonzero x ∈ {0, 1}m, px = 2−(m+1), and the rest of the probability
is concentrated on 0m. Then the entropy measure indicates that X has a fair amount of randomness,
but X is useless for simulating a BPP algorithm — if 0m is in the bad set for a particular input,
then the probability of error on that input is greater than half!

Instead, we will require that for X to have a large “amount of randomness”, it must be the case
that no string is given too much weight. This suggests the following measure.

Definition 2. The min entropy of a discrete random variable X is

H∞(X) = min
i

log
1

pi

.

Equivalently, H∞(X) is the largest value of k such that all outcomes have probability at most 2−k

under X.

We will say that a source X with H∞(X) ≥ k has at least k bits of randomness.
Our goal is to construct extractors such that given a source with min entropy at least k, the

output distribution of the extractor is statistically close to the uniform distribution on strings of
length as close to k as possible. A good extractor can be obtained by viewing the input sample as
the characteristic string of a function and using this function in the Nisan-Wigderson pseudorandom
generator construction. We will see more details about this construction in the next lecture.

9

