
CS 710: Complexity Theory 10/4/2011

Lecture 8: Alternatation

Instructor: Dieter van Melkebeek Scribe: Sachin Ravi

In this lecture, we continue with our discussion of the polynomial hierarchy complexity class
PH. We discuss three alternate (but equal) characterizations of the polynomial hierarchy class,
one of which involves the introduction of a new model of computation called alternating Turing
machine (ATM), which are a generalization of the nondeterministic Turing machine model. As an
application of the notion of alternation, we discuss time-space lower bounds for SAT.

1 Alternate Characterizations of the Polynomial Hierarchy

1.1 Using oracle Turing machines

Claim 1. ∀k ≥ 0,Σp
k+1 = NPΣp

k .

Proof. For k = 0, the statement reduces to NP = NPP. NP ⊆ NPP because we can choose to derive
the solution non-deterministically and can ignore the oracle. NPP ⊆ NP because any computation
done by the oracle can also be done nondeterministically without the help of the oracle.

For k ≥ 1, we will prove the case k = 1 and the same idea used can be repeated for higher
values of k. For k = 1, the statement reduces to Σp

2 = NPNP Suppose we have some L ∈ Σp
2. Then,

x ∈ L ⇐⇒ ((∃y1 ∈ Σ|x|
c
)(∀y2 ∈ Σ|x|

c
))
[
〈x, y1, y2〉 ∈ V

]
We can have a non-deterministic TM M guess the value of y1 in above formulation so that all that
is left to solve is L′ = (∀y2 ∈ Σ|x|

c
))
[
〈x, y1, y2〉 ∈ V

]
. Since the previous is exactly the class Πp

1 and

Πp
1 = coNP, we can use the oracle to test whether < x, y >∈ L′ and use the opposite value of the

output of the oracle. Thus, L ∈ NPNP.
Suppose L ∈ NPNP. Let L = L(ML′

) where M is a nondeterministic Turing machine and L′

has verifier V ′ ∈ P since L′ ∈ NP. We can generate Σp
2 to decide L as follows:

1. Existential Phase

• We will use the existential operator to express a computation path of M on input x,
including all queries M makes to oracle L′ and the answers M receives in return.

• The existential operator will also ensure that all positive query responses are valid by
expressing a witness wi for verifier V ′ for all queries expected to receive a positive
response from L′.

2. Universal Phase

• We use the universal operator to check that queries guessed to receive a negative response
from L′ are valid by checking that there exist no witnesses for these queries.

3. Predicate

1

• The predicate ensures that the computation path expressed is an accepting computation
path for M .

• Additionally, the predicate checks that V ′(qi, wi) = 1 for all queries qi which are slated
to receive a positive response from L.

• Lastly, the predicate checks that ¬V ′(qi, wi) = 1 for all queries qi which are slated to
receive a negative response from L′.

The formula constructed in this fashion decides L, meaning L ∈ Σp
2.

Claim 2. ∀k ≥ 0,Πp
k+1 = coNPΠp

k .

Proof. Follows from previous proof by complementation.

1.2 Using Boolean Circuits

Definition 1. (Boolean Circuits)
An n-input, single-output Boolean Circuit is a directed acyclic graph with n sources and one

sink. All inner nodes of this graph are called gates and are labeled ∧, ∨, or ¬ (corresponding to
AND, OR, and NOT gates). The leaf-nodes of this graph correspond to variables.

Claim 3. A Language L ∈ Σp
k can be expressed as an exponential size boolean circuit, with k+1

alternating levels of AND and OR gates, with an OR gate at the top-most level, with the fan-in of
the bottom level being polynomial bounded, and such that each bit in the description of circuit can
be computed in polynomial time.

Proof. Suppose language L ∈ Σp
k. We create a Boolean Circuit to decide L as follows: We create

a circuit evaluating V for all possible combinations of possible values for y1, ..., yk and a specific
value for x. Thus, for each level i, the level will contain an array of AND or OR (depending on
whether yi corresponds to an universal or existential quantifier) gates to enumerate all possible
combinations of y1, ..., yi−1. Each of these k levels will have about 2c·n branches coming out to the
next level. We can express V (y1, ..., yk, x) specifically as a CNF or DNF formula depending on the
value of k. If k is odd (meaning that the kth level has an array of OR gates), we have the formula
be DNF and vice-versa. We do this because instead of having k + 2 levels after including the CNF
or DNF formula in the circuit, we can merge the (k + 1)th level with the kth level since they will
have the same type of gate. Thus, we get a Boolean Circuit with (k+ 1) levels. All the branches of
the kth level decide a specific value of x because by the kth level, all the values of the y’s have been
set. Thus, an exponential number of branches come out of the kth level, representing every possible
value of x. And, only n branches come out of the (k+ 1)th level (representing each bit of x for each
specific guess for x), assuming that x has length n, meaning that the fan-out of the last level is
polynomially bounded. For each of these guesses of x, we evalute V , which we can do in polynomial
time, and hardcode the value of V into the (k+ 1)th level as a branch and this determines what the
circuit outputs for that value of x. Clearly, this construction of the circuit is of exponential size.
In order to calculate a bit of the circuit in polynomial time, we only need to associate the bit of
the description with a level of the circuit in order to know what gate it represents in order to learn
its value. This calculation can be done in polynomial time.

2

⋀

⋁ ⋀

¬ ⋁
x y

x yz

output

Figure 1: A boolean circuit representing f(x, y, z) = (x ∨ y) ∧ (z ∧ (x ∨ y))

Consider a boolean circuit as defined above. We aim to construct a Σp
k formula which can

compute the languade decided by the boolean circuit. We begin with the OR gate G1 at the top
of the circuit. The OR gate’s output will be 1 if any of the gates from a lower level (which will be
set of AND gates) ouptut 1. This condition can be expressed as

(∃G2)(G2 outputs 1) (1)

where G2 is an AND gate from a lower level. Similarly, G2’s output will be 1 if all the OR gates
from a lower level output a 1. Meaning (1) is equivalent to:

(∃G2)(∀G3)(G3 outputs 1) (2)

where G3 is any gate from lower level that is connected to G2. In this manner by repeatedly applying
these steps, we can build the formula for Σp

k with the final formula representing the output being
produced at the (k + 1)th level. The circuit is of exponential size, meaning we can represent each
of the gates in the circuit using polynomial sized indices. We can evaluate the last predicate of the
formula in polynomial time because for each gate (given the index), we can identify the sub-level
gates that need to be evaluated and the bits from the input that go into that gate in polynomial
time since each bit of the circuit description is computable in polynomial time (by condition on the
boolean circuit).

1.3 By Alternating Turing Machines

Alternating Turing Machines (ATMs) are a generalization of nondeterministic Turing machines.
Like NTMs, though ATMs are not a realistic computational model, studying them is helpful because

3

they capture an important class of languages. Whereas NTMs represent the class NP, ATMs are
used to represent the class PH.

ATMs are similar to NDTMs in that their transition function is a relation; however, for
NDTMs, every internal state (excluding qaccept and qreject) is labeled with either the existential(∃)
or universal(∀) operator and has different conditions for being an accepting configuration based on
this labeling. We say that a configuration Ci of an ATM is accepting if:

1. Ci is a halting configuration during which the machine is in an accept state.

2. Ci has state labeled with existential operator and at least one configuration reachable from
Ci in one step is an accepting configuration.

3. Ci has state labeled with universal operator and all configurations reachable from Ci in one
step are accepting configurations.

An input x is accepted by a ATM machine if the intial configuration is accepting. In order to
prevent infinite cycling, we can use a timing mechanism (bounding the computation by the total
number of possible configurations) to stop the machine and reject. Now we will define classes of
the polynomial hierarchy in terms of ATMs.

Claim 4. Σp
k = {L|L is accepted by ATM with existential start state running in polynomial time

and having at most k − 1 quantifier alterations}

Proof. Suppose L ∈ Σp
k. We can build a ATM M with k stages where the ith stage will guess the

value of yi. To have the qualifiers of yi’s match up, all the states in ith stage must be labeled with
the existential operator if k is odd and with the universal operator if k is even. For simulation of
the predicate V , we do not need nondeterminism so we only need to label the states involved in
the simulation of V such that the alternating structure of the machine (in terms of the labeling
of the states) is maintained. So, M is an ATM that recognizes L and does not have more than
k − 1 qualifier alternations because we have constrained M to only use k stages with alternations
occuring between each stage.

Consider a ATM M that has at most k − 1 alternations, with an existential start state, and
L′ = L(M). We construct a Σp

k formula to capture L′ as follows. Since by defintion M halts in
polynomial time, it does not spend more than polynomial time in any of its alternating stages. We
model the choice made by M in ith stage as a polynomial length string yi. This string is quantified
with the existential operator if states in the ith stage have an existential operator label or with the
universal operator if the states have an universal operator label. The verifier V is built to check
that the nondeterministic choices made are valid for the input and that the final state reached by
M is halting and accepting.

Claim 5. Πp
k = {L|L is accepted by ATM with universal start state running in polynomial time

and having at most k − 1 quantifier alterations}

Proof. The same proof as above can be used as the variation in the labeling of the start state
produces the intended result.

4

2 Time and Space Results involving ATMs

We define ATIME(t(n)) as the set of all problems that can be solved in time t(n) on an ATM with
unconstrained number of alterations for input of size n. Similarly, ASPACE(s(n)) is the set of all
problems solvable in space s(n) on an ATM with an unconstrained number of alterations for inputs
of size n.

Theorem 1. NSPACE(s(n)) ⊆ ATIME((s2(n))

Proof. The proof for this theorem follows closely our previous proof for NSPACE(s(n))⊆DSPACE(s2(n)).
In that proof, we constructed similar to a Σp

k formula using a divide-and-conquer strategy. The
existential qualifier was used to guess the intermediate configuration (of length O(s(n))) of the
nondeterministic Turing machine, while the universal qualifier was used to enforce the condition
that we had to go from the first configuration to the middle configuration and from the middle
configuration to the halting configuration. There were a total of O(s(n)) such qualifiers in the for-
mula for entire process. Additionally, the predicate verified whether it was possible to go from one
configuration to another and takes O(s(n)) time to do this since each configuration is of O(s(n))
size. Since the guessing step involves O(s2(n)) time, it is clear that the ATM can simulate the
NTM in O(s2(n)) time.

Theorem 2. ATIME (t(n)) ⊆ DSPACE(t(n))

Proof. We will simulate the O(t(n)) ATM M using a deterministic TM S using O(t(n)) space.
Basically, what we have to do is try all computation paths for M . The naive way to do this would
be to do a depth-first search of M ’s computation tree, storing each configuration of M along a
certain path. Since each configuration takes up O(t(n)) space and a certain path can be at most
O(t(n))long, this would take O(t2(n)) space. We do better by observing that we do not need to
store the entire configuration but only need to record the nondeterministc choice that we made at
each step (which can be done in a constant number of bits). TM S will accept if it determines
through this seach that the starting configuration is indeed an accepting configuration. Thus, using
this method we only take up O(t(n)) in our machine S when simulating M .

Theorem 3. ASPACE(s(n)) =
⋃

c>0 DTIME(2c·s(n))

Proving this theorem will be a homework exercise.

Corollary 1. AP = PSPACE

Corollary 2. AL = P

Corollary 3. APSPACE = EXP

3 Application: Time-Space Lower Bounds for SAT

Though it is generally hypothesized that it takes time exponential in the number of variables to
solve the SAT problem, it has not been proven that it cannot be done in linear time. Similarly,
though it is also hypothesized that it takes linear space to solve SAT, it has not been proven that
SAT cannot be solved in logarithmic space. However, if we take time and space into consideration
together, we can derive some lower bounds for time and space usage for SAT.

5

Definition 2. DTISP(t, s) is the class of languages decided by a deterministic TM in time t(n)
and space s(n), letting n be the size of the input.

Note that DTISP(t, s) is not the same as the set DTIME(t)
⋂

DSPACE(s). DTIME(t)
⋂

DSPACE(s) contains problems which are solvable in time t (with no restriction on space) and with
space s (with no restriction on time) whereas DTISP(t, s) contains problems which are solvable
with time t and space s.

The next lemma shows that if the space used by a deterministic TM is small enough, we get a
”speed up” by simulating this machine on a ATM. We use this lemma to prove a later theorem
that will establish time-space lower bounds for SAT.

Lemma 1. DTISP(t, s) ⊆ Σ2 TIME(
√
t · s)

Proof. Suppose M is a TM that runs in the bound stated above and accepts a language L ∈
DTISP(t, s). Without loss of generality, suppose M has unique accepting configuration cl. Let
input x be of length n. The computation tableau for M will have O(t(n)) rows and O(s(n))

columns. Letting c0 be initial configuration, it is clear that x ∈ L ⇐⇒ c0 `t(n)
M,x cl. Similar to

the proof of NSPACE(s) ⊆ DSPACE(s2(n)), we split up the computation tableau but rather than
break it up into two parts (as we did previously), we break the tableau up into b parts, where
b’s value is to be determined. Thus, we proceed by breaking up the tableau into b configurations

c1, ..., c(b−1) where c(b) = cl and by verifying that for each 0 ≤ i < b, ci `t(n)
M,x ci+1. This calculation

reduces to the condition:

x ∈ L⇐⇒ (∃c(1), . . . , c(b−1))(∀0 ≤ i < b)
(
c(i) `t(n)/b

M,x c(i+1)
)

where c(0) = c0 and c(b) = cl.
Let us now analyze the time required for an ATM to perform this computation. This is a Σp

2

calculation since each of ci is of O(s(n)) space and the calculation of c(i) `t(n)/b
M,x c(i+1) takes O(t(n))

time. The machine takes b · s time for the existential guess, as there are b blocks and s bits. It
takes log(b) time for the universal guess. Lastly, it takes t/b time to do the predicate computation.
Thus, the total running time for the machine is O(b · s + log(b) + t/b). The optimum size for b is
then defined by:

b · s = t/b

Meaning, b =
√
t/s. Thus, the running time for the ATM is O(

√
ts).

4 Next Time

We will continue with our discussion of Time-Space Lower Bounds for SAT and will later discuss
nonuniform models of computation.

Acknowledgements

In writing the notes for this lecture, I perused the notes by Mushfeq Khan and Chi Man Liu for
lecture 7 from the Spring 2010 offering of CS 710, and the notes by Ashutosh Kumar for lecture 6
from the Spring 2010 offering of CS 710.

6

