
CS 710: Complexity Theory 10/13/2011

Lecture 11: Polynomial Approximations

Instructor: Dieter van Melkebeek Scribe: Chetan Rao

In the previous lecture, we discussed Boolean circuits and their lower bounds. In particular, we
discussed constant-depth circuits with unbounded fan-in (in-degree) that can compute certain op-
erations such as binary addition in polynomial-size. We also highlighted that binary multiplication
and parity (⊕n - defined in last lecture) cannot be decided in this framework.

In today’s lecture, we will focus on the two different approaches to show that parity, and
in turn multiplication, cannot be decided by sub-exponential-sized constant-depth circuits. The
following section (Section 1) provides insight on two methods - polynomial approximations and
random restrictions. Sections 2 and 3 conclude with a lower bounds for parity.

1 Lower Bounds for ⊕n on constant-depth circuits

The literature has concentrated on two methods to establish lower bounds for parity on constant-
depth circuits -

• Random Restrictions method - This approach uses a p-random restriction (defined in

previous lecture) to prove a tight lower bound for circuits - Cd(⊕n) ≥ 2Ω(n
1

d−1 ). This method
also provides similar results for MAJORITY and Modular gates (MODk).

Definition 1 (Modular gate). A MODk gate is a gate that outputs 0 if the sum of its inputs
(mod k) is 0, and 1 otherwise. The precise definition is as follows -

MODk(x) =

{

0 if
∑

i xi ≡ 0 (mod k)
1 otherwise

where x is the gate input.

• Polynomial Approximations method - This method makes use of low-degree polynomial

approximations (over finite fields) to show that Cd(⊕n) ≥ 2Ω(n
1
2d ) (d is circuit depth). Al-

though this is a weaker bound in comparison with the random restrictions method, the proof
technique is very interesting and it allows the use of MOD3 gates.

2 Polynomial Approximations method

Theorem 1. Given any circuit Cd of depth d that decides ⊕n, its size is at least 2Ω(n
1
2d ). This

result holds even if we allow additional MOD3 gates.

Proof. We prove the theorem in two steps. In the first step, we approximate the output of constant-
depth circuits using a low degree polynomial over the field Z3 with a small error. The choice of
Z3 aids in expressing MOD3 gates as low degree polynomials. In general, for any prime p, MODp
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gates have low degree polynomials in the field Zp. In the subsequent step, we show that for the
parity function such a low-degree polynomial does not exist.

Step 1: Consider a circuit C made of AND, OR, NOT and MOD3 gates. C can be represented
as a multivariate polynomial of degree n where n is the size of the input using a polynomial co-
efficient for each input. However, our aim is to express C as a lower degree polynomial, allowing
reasonably small errors. To achieve this objective, we must represent every literal and gate of the
circuit in terms of an approximate low-degree polynomial over Z3 i.e. find polynomial P ∈ Z3 s.t.
on many inputs X ∈ {0, 1}n, P (X) is equal to the value of the gate.

We construct the polynomial inductively from the bottom to top. The base case would be a
simple literal:

LITERAL (X): In this case, the polynomial is trivially idempotent - Pi(X) = Xi. The degree
of the polynomial is 1 and there are no errors induced by this substitution.

In the inductive step, we consider each of the possible gates. We consider the following sequence
of gates:

NOT (¬): If the input of a NOT gate is polynomial P (X), then P ′(X) = 1− P (X) represents
the output. This does not increase the degree of the polynomial or introduce any additional error.

MOD3 : The output P ′(X) of the gate is 0 when
∑m

i=1 Pi(X) ≡ 0 (mod 3). The output is 1 if
the resultant sum is either 1 or −1(2). Upon squaring the sum of input polynomials, the polynomial
exactly behaves like the MOD3 gate. Hence, the output polynomial is P ′(X) = (

∑m
i=1 Pi(X))2.

However, the degree of the polynomial doubles with this gate and there are no additional errors.
OR (∨): The output P ′(X) of the OR gate is 0 iff (∀i) Pi(X) = 0, or equivalently, (∀i) (1 −

Pi(X) = 1). This can be represented as follows:

α : P ′(X) = 1 −
m
∏

i=1

(1 − Pi(X)) (1)

The output polynomial is precise but its degree is dependent on the fan-in m and could be un-
bounded. In the presence of multiple hierarchies of OR gates the polynomial will have a comparable
degree to that of the trivial bound n. To obviate this issue, we pick a randomized linear combination
of inputs. This process is repeated t times for a better approximation of the OR gate.

Let ri ∈ Z3 be the coefficient associated with Pi(X) and let the output function be defined as:

β : P ′(X) = (
m

∑

i=1

ri · Pi(X))2 (2)

Note that we square the linear combination to keep the output P ′(X) as Boolean. If the actual
output of the OR gate is 0, the approximation (P ′(X)) is always 0. On the other hand, if the output
of OR gate is 1, the approximation errs (outputs 0 when some Pj(X) = 1) with a probability 1/3:

Pr(P ′(X) = 0| ∨m
i=1 Pi(X) = 1) =

1

3

To verify that this holds, assume that we pick rj at the end. Since Pj(X) = 1, there is exactly one
value of rj (among {0, 1, 2} = Z3) that makes the polynomial to output 0.
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A few key observations of this approximation is that we have constructed a polynomial whose
degree doubles instead of fan-in (m) of the OR gate. The error introduced by the approxima-
tion is atmost 1/3. As with any randomized algorithm, we can repeat the above procedure for t
independent trials and see if the output of at least one of the them is one.

Combining the formulations 1 and 2, the final approximate polynomial is:

P ′(X) = P ′
α(P ′

β1
(X), . . . , P ′

βt
(X)), (3)

where P ′
α and P ′

βi
are the applications of α-formulation and β-formulation (for ith trial) respectively.

This resultant polynomial has a degree of 2t times the input as each application of equation β-
formulation doubles the degree; and has an error of atmost µ = 1

3t as each of the individual t trials
must result in an error.

AND (∧): We can simulate an AND gate using the NOT and OR gates. The resulting approx-
imation P ′(X) has characteristics of the OR gate approximation (2t degree increment and an error
of µ).

P
′

¬

P

(a) NOT gate

Pm

P
′

P1
. . .

m

MOD3

(b) MOD3 gate

Pm

P
′

∨

P1
. . .

m

(c) OR gate

Pm

P
′

P1
. . .

m

∧

(d) AND gate

Figure 1: Approximation of Boolean gates

If the depth of the circuit is d, the degree of the polynomial P (X) representing the entire circuit
will be at most (2t)d. P (X) gives the wrong value only if the output of at least one of the gates
in C is wrong. This happens with probability at most µ · |C| (tighter bounds would depend on the
number of AND/OR gates in C). If we consider all possible 2n inputs (input size n), the expected
number of inputs for which P (X) will output the wrong value is atmost (µ · |C|) · 2n. This shows
the existence of random Z3 coefficients for which P (X) is wrong in no more than the expected
number. More formally,

Lemma 1. There exists a choice of ri’s such that the number of input possibilities for which the
approximate polynomial P (X) is not equivalent to the behavior of the circuit is atmost 2n · |C|

3t .

Proof. For every fixed input X and circuit C, the error probability at any OR/AND gate would be
µ = 1

3t . Hence the upper bound of the error in the whole circuit is µ · |C| -

Pr(P (X) 6= C(X)) ≤ µ · |C| =
|C|
3t
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The expected number of errors given all 2n input possibilities is -

E[#X s.t. (P (X) 6= C(X))] ≤ 2n · |C|
3t

Thus, for some choice of ri’s we have that -

#X s.t. (P (X) 6= C(X)) ≤ 2n · |C|
3t

This construction could be generalized in any field Zp, for prime p, using the MODp gates.
From Fermat’s Little Theorem, we can use the fact that ap−1 ≡ 1 (mod p) ∀a ∈ Zp\{0} to ensure
Boolean values for AND/OR gate approximations. This would result in an approximate polynomial
of degree of atmost ((p − 1) · t)d and maximum error 1

pt .

Step 2: In this step, given a polynomial P (X) of some degree that approximates ⊕n on a
subset G of inputs, we establish an upper bound for the degree of the approximate polynomial
P (X) below which every function of n inputs has a corresponding polynomial approximating it
over G. By equating the number of such functions to the number of polynomials with degrees not
greater than the established upper bound, we derive the lower bound on the depth of circuit C.

Initially, we transform the Boolean inputs to a convenient domain. Using a simple linear
transformation from Boolean values {0, 1} 7→ {1,−1}, we reduce ⊕n to a simple product of literals.

We assume that this polynomial P (X) has degree atmost ∆ and computes correct values on
more than (1− µ) fraction of inputs. Let us represent this set of good inputs as G ⊆ {−1, 1}n and

hence |G|
2n ≥ 1 − µ.

Lemma 2. Let P be a polynomial of degree at most ∆ that represents
∏n

i=1 xi in a set G ⊆ {−1, 1}n.
Then each function f : G → Z3 has a multivariate polynomial Q over Z3 of degree at most n+∆

2
such that it represents f , i.e. (∀x ∈ G)f(x) = Q(x).

Proof. Every function f on n inputs has a multivariate polynomial of degree at most n. This is
easy to see as we can represent every possible input using monomials of degree n. Let us start
from one such polynomial Q′ (such that f = Q′ on G). Consider a monomial in Q′ of the form
∏

i∈I xi where I is a subset of the input bits {1, 2, . . . , n}. Since we represent multiplication with
±1 inputs, we can rewrite the monomial as:

∏

i∈I

xi =
(

∏

i6∈I

x2
i

)(

∏

i∈I

xi

)

=
(

∏

i6∈I

xi

)(

n
∏

i=1

xi

)

(4)

=⇒
∏

i∈I

xi =
(

∏

i6∈I

xi

)

P (X) (5)
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Equation 4 holds for any input X of n bits as multiplication with squares of each ±1 input does not
change the value of the expression. Equation 5 is an approximation of multiplication and hence,
holds only for the set of good inputs (G). The LHS of (5) has degree |I| and the RHS has a degree
at most ∆ + |Ī | = ∆ + n − |I|. Choosing the minimum degree expression among them helps us
express any monomial in Q′ with a maximum degree of n+∆

2 (average of the degrees).

Further, we combine the result of Lemmas 1 and 2 to prove the theorem. Suppose there exists
a circuit C of depth d computing ⊕n. From Lemma 1, there exists a polynomial P of degree at
most ∆ = (2t)d that computes parity on a set G of relative size at least 1 − |C|

3t . Consequently,
from Lemma 2, all functions f : G → Z3 for some good input set (G) can be represented using a
multivariate polynomial of degree at most n+∆

2 . The total number of such polynomials must be at
least the number of functions f from G to Z3.

The number of multivariate polynomials with degree at most n+∆
2 is exactly 3M where M is

the number of monomials of degree at most n+∆
2 . There are

(

n
i

)

monomials of degree i, and hence

M =

n+∆
2

∑

i=0

(

n

i

)

The number of monomials of degree ≤ n
2 will be 2n−1 (half of the 2n possible monomials as

(n
i

)

=
( n
n−i

)

). Each of the remaining ∆
2 = Θ(∆) terms in the summation will be lower than

(n
n
2

)

(
(n

i

)

max =
(n

n
2

)

). Using Stirling’s approximation, we can show that:

(

n
n
2

)

= Θ

(

2n

√
n

)

Thus,

M = 2n−1 + 2n · Θ
(

∆√
n

)

= 2n

(

1

2
+ Θ

(

∆√
n

))

The number of functions of the form G → Z3 is 3|G| as each element of G is assigned to one of
3 possible values of Z3. As the number of functions of this form must be at most the number of
polynomials of degree at most (n+∆)/2, 3|G| ≤ 3M or, in other words, |G| ≤ M . This gives us the
following bound on the size of G.

1 − µ · |C| =
|G|
2n

≤ M

2n
≤ 1

2
+ Θ

(

∆√
n

)

From Lemma 1, µ ≤ 1
3t when ∆ = (2t)d. Thus,

1 − |C|
3t

≤ 1 − µ · |C| ≤ 1

2
+ Θ

(

(2t)d√
n

)

(6)

=⇒ |C| ≥ 3t

[

1

2
− Θ

(

(2t)d√
n

)]

(7)
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For equation (6) to be meaningful, the RHS should be less than 1. Thus, setting (2t)d = O(
√

n)

gives an appropriate value for the RHS in the equation (7). Thus, t = Θ(n
1
2d ) and this gives

|C| ≥ 2Ω(n
1
2d ).

The only part of the above analysis that changes when working over Zp rather than Z3 is that
∆ = ((p − 1) · t)d rather than (2t)d. Thus, the result holds with the same lower bound on |C| for
Boolean circuits with MODp gates for any prime p. In fact, the argument in the above proof can
be generalized to give a lower bound for circuits with MODp gates to compute MODq for distinct
primes p and q (recall that parity is the special case of q = 2). This is achieved by viewing Step
2 as harmonic analysis over Z2 and then generalizing that to harmonic analysis over Zq. As this
generalization takes a bit of work to prove, we leave it at that.

We further use the proof above to give a lower bound on circuits that even approximate parity.

Corollary 1. A depth d unbounded fan-in circuit that agrees with parity (⊕n) on a fraction at least
1
2 + 1

n(1−ǫ)/2 of {0, 1}n must have size 2Ω(nǫ/2d).

Proof. Let C be a circuit that is correct on at least (1
2 + ρ) of the inputs for ρ > 0. Similar to

Theorem 1, we can prove that there exists a polynomial of degree ∆ = (2t)d that is correct on a

set G that is at least 1
2 + ρ − |C|

3t of {0, 1}n. From Step 2 of the proof above,

1

2
+ ρ − |C|

3t
≤ 1

2
+ Θ

(

(2t)d√
n

)

=⇒ ρ − |C|
3t

≤ Θ

(

∆√
n

)

(8)

=⇒ |C| ≥ 3t

[

ρ − Θ

(

(2t)d√
n

)]

(9)

Note that the (2t)d/
√

n term is Ω(1/
√

n), so ρ must also be Ω(1/
√

n) to ensure the lower bound
we get is even positive. If we let ρ = 1/n(1−ǫ)/2, we set (2t)d = Θ(nǫ/2) to optimize the RHS of

equation (9). Hence, t = Θ(nǫ/(2d)), and we get that |C| ≥ 2Ω(nǫ/(2d)).

The above corollary proves the inapproximability of the parity function using constant-depth
circuits. There is a stronger result that can be proved using random restrictions.

3 Random Restrictions method

In this section, we provide an alternate proof to Theorem 1. The bound for the circuit size is
tighter than what was achieved by the polynomial approximations method in Section 2. However,
the proof does not allow the circuit to contain additional MOD3 gates.

A restriction fixes some inputs of a circuit to constant values, and leaves other inputs free.
More formally, we define random restictions as the following:

Definition 2 (Random Restrictions). A p-random restriction on n variables is a random function
ρ : {x1, . . . , xn} → {∗, 0, 1}, such that for each i, independently, Pr[ρ(xi) = ∗] = p and Pr[ρ(xi) =
0] = Pr[ρ(xi) = 1] = 1−p

2 . If ρ(xi) = ∗, then we leave xi as a variable. Otherwise we set it to the
result of ρ(xi).

Note that if we apply a random restriction to a parity function, we get a parity function or its
complement depending on the inputs corresponding to ∗.
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Theorem 2. Given any circuit Cd of depth d that computes ⊕n, its size is at least 2Ω(n
1

d−1 )

Proof. To prove this theorem, let us assume a neat structure for the circuit Cd that we consider -

• NOT (¬) gates don’t count towards the size or depth of the circuit.

• The circuit gates are organized in alternating layers of AND and OR gates.

We further show that these assumptions don’t affect the bounds.

Lemma 3. If Cd is a circuit of size |Cd| and depth d, then there is a circuit C ′
d of size at most

2 · |Cd| and depth d that computes the same function and such that all the NOT gates are applied
at the input level.

Proof. We prove the stronger statement that, for every gate g of Cd, there is a gate g′ in C ′
d whose

output is the complement of g. Then we just let the output of C ′
d be the complement of the output

gate of Cd. Let us order the gates of Cd as g1, . . . , g|Cd| in such a way that if the gate gi uses the
output of gate gj as an input then j < i. We describe an inductive construction. In the base case, if
g1 is an AND gate (OR gate), then g′1 is an OR gate (AND gate), whose inputs are the complements
of the inputs of g1. It follows from De Morgan’s law that the output of g′1 is the complement of the
output of g1. In the inductive step, if we have constructed gates g′1, . . . , g

′
i whose outputs are the

complement of g1, . . . , gi, then g′i+1 has similar complemented inputs as gi+1 and from De Morgan’s
law, it follows that the output of g′i+1 is the complement of the output of gi+1.

Lemma 4. If Cd is a circuit of size |Cd| and depth d, then there is a circuit C ′
d of size at most

d · |Cd| and depth d that computes the same function and such that the gates are arranged in d
sequential layers which have alternating AND and OR gates.

Proof. The associativity of AND and OR ensures that every input-output path in the circuit has
an alternation between AND gates and OR gates. If there is an AND gate (OR gate) g in the
circuit one of whose inputs is coming from another AND gate (OR gate) g′: then we can connect
the inputs of g′ directly to g. This does not alter the size or depth of the circuit. Repeatedly
merging the similar gates, we eventually get an alternating circuit C ′

d which has the same size and
depth of Cd.

Finally, we arrange the gates in d layers so that each layer is entirely AND or OR gates, and
wires go only from lower-numbered layers to higher-numbered layers. Finally, we replace all wires
that jump many layers by a path of alternating fan-in 1 AND gates and fan-in 1 OR gates. This
step increases the size of the circuit by atmost a factor of d.

Further, we use the following lemma (Switching Lemma) to establish a contradiction for a
polynomial-sized circuit Cd that decides PARITY.

Lemma 5 (Switching Lemma). Let ϕ be a k-CNF formula. We then apply a ρ-random restriction
that leaves a fraction p of variables unassigned. For the remaining fraction (1− p) of the variables,
independently hardwire 0 or 1 based on the random restriction.

Then, for every k′,

Pr[ϕ|ρ cannot be expressed as a k′-DNF ] ≤ (5pk)k
′
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Note that the statement is trivial if the restriction can set all variables (p = 1). For practical
purposes, the values of p, k and k′ should concur with the inequality - |C| · (5pk)k

′

< 1.

Proof Idea. Consider an AND of ORs, where each OR has size at most k. Notice that a random
restriction is not very likely to set an OR to 0 since all literals involved need to be set to 0 for that
to happen. But if k is small, there is a nontrivial probability that this happens. There are two
cases:

1. There are a large number of pairwise disjoint ORs. In that case, there are many independent
events that can set the AND gate to 0, namely each of those pairwise disjoint ORs being set
to 0. Since each of those events happens with a nontrivial probability, the odds are that the
random restriction will set the AND gate to 0, in which case it can trivially be written as a
DNF will small bottom fan-in.

2. There is not a large number of pairwise disjoint ORs. Let V be a minimal set of variables
such that each OR queries at least one variable from V . Since there is a lot of overlap among
the ORs, V is small. If we query all the variables in V , then we have essentially reduced
our problem to a simpler one of the same type, namely the transformation of a CNF with
bottom fan-in at most k − 1. This is because each of the ORs contains at least one literal in
V . We then repeat the case distinction to that simpler problem, depending on the setting of
the variables in V .

Along every branch of this process, we will eventually end up in case 1. Since there are at most
k steps and each step involves querying a small number of variables, we end up with a decision tree
of small depth that represents the given CNF under a random restriction with high probability. A
decision tree of small depth can be turned into a DNF with small bottom fan-in by writing down
an OR over all paths in the decision tree that lead to acceptance of the AND of all the conditions
that define the path.

∧

∨
≤ k

· · ·

. . . .

· · ·

. . . .

∨

∧
≤ k

′

ρ

Figure 2: k−CNF to k
′−DNF
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Given a circuit Cd that decides PARITY, we can rewrite it in terms of alternate levels of AND
or ORs without much change in size (Lemmas 3 and 4). Note that we can also switch from a DNF
to a CNF by considering the negation of the circuit.

∨

· · ·

· · ·

∧

∧

. . . .

∨
≤ k

· · ·

∨

· · ·

· · ·

∧

. . . .

· · ·

≤ k
′

∧

∨
MERGE

Depth 1

Depth 2

Depth 3

Depth d

ρ

Figure 3: Decreasing the depth by merging adjacent levels while maintaining a small bottom fan-in

Next, we use repeated invocations of Switching Lemma to reduce the circuit depth by 1 in each
iteration (as shown in Figure 3) until we are left with a circuit of depth 2. Suppose that the bottom
gates are ANDs (ORs). To apply the switching lemma, we need to ensure the gates at the bottom
of the circuit have small fan-in. To ensure this, we insert dummy OR (AND) gates below the AND
(OR) gates. Namely, for each input x to the AND (OR) gate, we replace that with x OR x. Now,
we apply the switching lemma to the AND of ORs (OR of ANDs) we have created. With high
probability, each application is successful in creating an OR of ANDs (AND of ORs) with small
bottom fan-in and without setting too many variables. Now the second bottom-most and third
bottom-most levels are both ORs (ANDs) and can be merged. This reduces the depth of the circuit
by 1 (back down to d since we added a level initially) without adding extra gates.

Now the circuit still has small bottom fan-in, so we can apply the switching lemma again. We
repeat this process until we get a circuit C ′ of depth 2. At this point, if C computed ⊕n, then C ′

computes ⊕m on some m-subset of the variables (those that were unset by the random restrictions;
E(m) = n · pd−1).
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This number of unset variables m is larger than the small bottom fan-in of the resulting k−CNF
(or k−DNF) circuit C ′ and hence, PARITY cannot be decided by C ′. Therefore, we arrive at a
contradiction.

Corollary 2. The size of circuit Cd of constant depth d required to compute ⊕n correctly on atleast

(1
2 + 1

2n1/d ) fraction of the inputs, is atleast 2Ω(n
1
d ).

Cd(⊕n) ≥ 2Ω(n
1
d )

Proof. The proof follows similar ideas as that of Corollary 1, but is more involved.

4 Next Lecture

In the next lecture, we will focus on parallelism. We will use circuits to model parallel computations.
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