CS 710: Complexity Theory 2/18/2010

Lecture 12: Parallelism

Instructor: Dieter van Melkebeek Scribe: Wenfei Wu

The goal of parallelism is to speed up computation by dividing it among many processors. It is
not trivial to do this because procedures of a computation may be in sequence. For example, in a
Boolean circuit, one gate’s output may be the input of another gate, then those two computation
cannot be done in parallel. For computations in the same level or that does not depend on each
other, parallel will speed them up . In this lecture, we discuss models for parallelism and complexity
classes that capture efficiently parallel-computable problems.

1 Conceptual Model

Interactive Turing Machines can define robust efficient class with two properties: polynomial num-
ber of processors and polylog running time. We do not choose interactive Turing Machines as our
model due to two issues. It is hard to model connectivity between Turing Machines. It is hard to
define uniformity in senario of interacting Turing Machines.

We want our model of parallelism to be of roughly the same power as large collections of
interactive Turing machines, all acting together through some means of communication.

Our model must capture this means of communication. Though analysis can be dependent on
the connectivity between processors, in our model, we will blithely assume that connections are
free because we want to abstract away from the issue of connectivity. This is not realistic; in real
parallel computers all processors will not be directly connected, but rather will have some routing
mechanism. There are several network configurations, like butterfly nets and hypercubes, that grow
at reasonable rates and yield communication between any two processors in log p time, where p is
the number of processors.

Our model must also impose some limits on the number of processors, and here our model
must diverge somewhat from physically realizable computers. If we allow only a constant number
of processors, then we can give only constant speedup over a standard Turing machine for any
problem. Thus, we must allow the number of processors to grow with the input size. This will
entail issues of uniformity.

Our criteria for efficiency change when we move from standard Turing machines to vastly parallel
computers; we will now aim for polylog time instead of polynomial time. To achieve this, we will
permit a number of processors polynomial in the size of the input.

2 Concrete Model

We model parallel computation with Uniform NC-Circuits. The class NC and AC are defined as
follows:

Definition 1. NC* is the set of all languages recognizable by circuits with bounded fanin, polynomial
size, and O(logFn) depth. NC is the union of all classes NCF, that is, NC = UkZONCk.
An family of circuit is uniform if the circuit for input of size n can be computed in space

O(log(n))



Definition 2. ACF is the set of all languages recognizable by circuits with unbounded fanin, poly-
nomial size, and O(logk n) depth. AC is the union of all classes ACF, that is, AC = UkZOACk.

Thesis 1 L has an efficient parallel algorithm, in the sense of interacting TM’s, poly space, polylog time,
iff L is in logspace Uniform NC.

3 Complexity of NC
Next we place the class L among the classes in the NC* hierarchy.

Theorem 1. Uniform NC' C L C Uniform NC.

Proof. First, we show that Uniform NC! C L. Suppose that a uniform family F of NC!-circuits
decides language A. Then, given an input z, we can simulate F' in logarithmic space as follows:

1. Compute the circuit C' appropriate for |z|. More precisely, compute each bit of the description
of C as it is needed. We do not have enough space to store the entire description of the circuit,
but we can compute each part as we need it in logarithmic space because F' is uniform. You
only have to keep track of the path from the root to where you are, which is logarithmic
because F' has logarithmic depth and bounded fan in.

2. From the output node of C'; compute the values of each gate in C recursively, without mem-
oization. This is painfully slow, but we wish to optimize for space. Since the depth of C' is in
O(log|z|), we can do this computation in logarithmic space.

3. If the output of C is 1, accept. Else, reject.

The fact that L C Uniform NC? is left as an exercise. The proof is similar to NSPACE(s) C
DSPACE(s?). Look at the computation tableau and guess the intermediate configuration from
a polynomially many number of possibilities. For each of the resulting logs, do some verification,
write this down as a circuit, what’s the depth of the circuit going to be? Each time you break the
log into two, you get a logarithmic number of break ups. O

This gives us a fairly tight connection between space bounded computation and log depth
circuits.

We can also relate every class in the NC hierarchy to classes in the closely related AC hierarchy,
as follows:

Theorem 2. NC*F C ACF C NCF+H!,

Proof. Since NC* is a restriction of ACF, the first inclusion is clear. The second inclusion is
implied by the fact that polynomially-bounded fanin AND and OR can be simulated by a simple
logarithmic-depth circuit of bounded fanin. O

4 Languages in Various NCF

To give a feel for the NC hierarchy, we see how efficiently some basic tasks can be accomplished in
parallel.



4.1 NC°

The class NC" contains, by definition, only those languages decidable by constant-depth, constant-
fanin circuits. This is equivelent to as saying that these problems must be decidable by checking
only a constant number of bits of the input.

4.2 NC!

By Theorem 2, this class contains AC®, and thus contains, for example, binary addition. This class
also contains iterated addition.

Theorem 3. Iterated addition is in NCL.

Proof. Given three binary numbers, we can output two numbers with the same sum using constant
depth circuit. Each triple of input bits contains 0 to 3 ones; thus we produce one binary number
containing the value of these additions modulo 2, and another binary number containing the carries.
For example, see Figure 1.

10010101
01111011
+ 00111101

11010011 mod?2
+ 001111010 carries

Figure 1: Finding two numbers with the same sum as three different numbers.

This operation is possible with constant-depth circuits. So, we group all of our inputs into
groups of 3, apply this operation, and repeat until there remain only two inputs. This operation
reduces the number of remaining numbers to add by 1/3, so some logarithmic number of layers of
these circuits reduces the problem to binary addition, which is in NC!, as we have already seen. [

Because iterated addition is in NC!, binary multiplication is also in NC!. We can also perform
matrix multiplication in NC!: we do every useful element-wise multiply in one binary multiplica-
tion layer, and follow it by a layer of iterated addition. Both subproblems are in NC!, so their
concatenation is in NC!,

A symmetric function is a function whose value does not change when its input bits are per-
muted; thus, its value is dependent only on the size and the number of ones in the input. Both
of these can be determined by iterated addition, so all symmetric functions are NC!-computable,
though not necessarily in Uniform NC!.

It is known that iterated multiplication is also Uniform NC!-computable, though this proof is
more complex.

4.3 NC?

By a divide-and-conquer algorithm using circuits in NC!, we can show that iterated matrix mul-
tiplication is in NC2. This implies that matrix inversion, linear systems, and most of the rest of
linear algebra is NC?-computable.



4.4 Upper Bounds

For the classes NCF with k > 0, known upper bounds on computation power are quite weak. For
example, the truth of the following statements are all open questions:

e P CNC!?
e P CNC?
e NP C NC!?

CVP is the Circuit Value Problem: Given a circuit C' and an input x, return what C' would
output given z. Because CVP is P-complete under log-space mapping reductions, we know that P
is in NC iff CVP is in NC.

The following questions remain interesting even when nonuniform:

CVP € NC': We consider this unlikely but we can’t rule it out.

SAT € NC!

5 Connection Between NC! and BP

The following theorem states that NC! circuits and bounded-width branching programs of polyno-
mial size are equally powerful. The proof uses formulas, a restricted version of circuits.

Definition 3. A formula is a circuit in which all gates have a mazximum fanout of 1.

Since every gate in a formula has a maximum fanout of 1, the number of gates in a formula
matches our notion of the size of a boolean expression. A standard circuit may have the shape of
any directed acyclic graph, but a formula must look like a rooted tree, except at the inputs. Thus,
a circuit might be much smaller than an equivalent formula by reducing duplication and sharing
outputs.

Theorem 4. The following are equivalent in power:
1. NC! circuits
2. Polynomial-size formulas
3. Log—depth formulas
4. Bounded-width branching programs of polynomial size

Proof. We will show that each of the theorem’s elements can simulate its predecessor in the above
theorem; so, poly-size formulas capture NC* circuits, log—depth formulas capture poly-size formulas,
and so on.

Proposition 1. NC! circuits can be simulated by poly-size formulas.



Proof. Formulas are like circuits where the fan-out is at most 1. So, if you have a repeated part of
the formula, you must compute both occurences separately.

A circuit forms a rooted directed acyclic graph, with its root at the topmost operator. Given
an NC!circuit, we can recursively transform it into an equivalent formula by recursively replacing
subgraphs. For each node with fanout &, with k£ > 1, we replace that node (and its child subgraph)
with & copies of the node (and its child subgraph) so that each node has fanout 1, and each node
is the child of one of the old parents. For example, the black node in Figure 2 gets transformed in
this way.

Figure 2: One step of the recursive transformation from NC'-circuit to poly-size formula.

The circuit has only one root for output. So, suppose we repeat this procedure at every node
from the root down on a circuit of maximum fanin f and depth d. The number of nodes at depth
t+1is no more than f times the number of nodes at depth ¢, so there are at most f* nodes at layer
t. The size of the bottom layer dominates the size of the formula, so this process yields a formula
of size O(f?%). Because all NC! circuits have depth O(logn), the size of the formula is fOUogm)
which is polynomial in n. At each step, the function computed by the generated circuit remains
the same, so this process creates a poly-size formula equivalent to an NC! circuit. ]

Proposition 2. Polynomial-size formulas can be simulated by log—depth formulas.

Proof. Given a formula with binary fanin, we can find an edge of the formula so that the sub-
formulas on either side of that edge are at least 1/3 the size of the whole formula. Let f be the
sub-formula at the low side of the cut edge, and let g, be the sub-formula on the high side of the
cut edge with the constant literal x placed where f was. Figure 3 illustrates these two trees.
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Figure 3: First step in the transformation from polynomial size formulas to log-depth formulas. A
cut at a well-chosen edge of a formula yields two sub-formulas, f and g.



From f and g, we create a formula with the same function as the original, but with decreased
depth. This formula is (f A g1) V (=f A go), and is shown in Figure 4. To see that this formula
computes the same function as the original, consider the value of f. If f is 1 on its inputs, then the
original function would have had the value of ¢g;. Likewise, if f is 0 on its inputs, then the original
function would have had the value of gy. So, the new function combines both cases.
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Figure 4: Second step in the transformation from polynomial size formulas to log-depth formulas.
How to combine the two sub-formulas.

We then recur the procedure on the sub-trees of f, gg, and g;. We continue recursing until
we are considering constant-size formulas. Let s be the size of the original formula. Notice that
f, 90, and g; are each of size at most 2s/3. After applying the next step, the sub-formulas being
considered are further reduced by a factor of 2/3. Also notice that each level of recursion places
a depth two circuit at the top of the sub-formula being worked on. Then, the depth d of the final
formula generated satisfies the inequality 2 - (2/3)%2s < 1, in other words d = O(log s). O

Proposition 3. Bounded-width branching programs of polynomial size can be simulated by NC!
circuits.

Proof. Suppose B is a branching program of width w, containing a polynomial number of layers p.
We construct an NC? circuit to simulate B with the following divide-and-conquer strategy:

1. Place an OR gate, with fanin w. We will ensure that this OR gate is true if the input induces
a path from the start state in the first layer of B to the accepting state in the last layer (layer
p) of B.

2. At the i*" input to the OR gate, place an AND gate with fanin two. This AND outputs true
if the input induces a path from the start state of the first layer, to the the i*® state of layer
p/2, and to the accepting state of layer p. One input to this AND is true iff the sub-path
from layer 1 to layer p/2 is induced, and the other input is true iff the sub-path from layer
p/2 to layer p is induced.

3. Recur on the inputs of the ANDs until reaching the base case of checking adjacent layers.

Because p is polynomial, this divide-and—conquer strategy recurs only O(log(n)) times, giving
the constructed circuit a logarithmic depth. To analyze the size of the circuit, we rely on the fact
that we are generating a circuit and not a formula: once a sub-problem is computed once in the
circuit, we do not need to compute it again if it is needed again. There are roughly 2p intervals
considered in subproblems, and w? subproblems of the form “Can state a in layer A be reached



from state b in layer B?” are asked for each interval. Thus, the number of individual “questions”
that our circuit computes is only 2pw?, which is polynomial in the size of the input. So, the circuit
we have constructed uses a polynomial number of gates; since it also has logarithmic depth, the
circuit is in NC!. O

We will finish the proof of Theorem 5 in the next lecture by proving the following proposition.

Proposition 4. Log-depth formulas can be simulated by bounded—width branching programs of
polynomial size.

O

6 Next Time

In the next lecture, we will prove proposition 4, then go on with random algorithms.
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