
CS 710: Complexity Theory 11/8/2011

Lecture 18: Pseudorandomness

Instructor: Dieter van Melkebeek Scribe: Sachin Ravi

In the last lecture, we introduced the notion of a pseudorandom generator (PRG), discussed
how a PRG can be used to reduce the amount of randomness required to run a randomized al-
gorithm, and outlined the construction of a PRG that derandomized space-bounded randomized
computation. In this lecture, we complete our discussion of Space-Bounded Derandomization and
start considering Time-Bounded Derandomization by exploring the connection between the two
notions of pseudorandomness.

1 Space-Bounded Derandomization (Continued)

Let us first recap the defintion of a pseudorandom generator, specifically for a class of decision
problems.

Definition 1. An ε-PRG for a class A of decision problems is a family (Gr)r of functions where
Gr : {0, 1}l(r) −→ {0, 1}r such that for all A ∈ A:

(∀∞) | Pr
ρ←Ur

[A(x, ρ) = 1]− Pr
σ←Ul(r)

[A(x,Gr(σ)) = 1]| < ε

The important parameters in the above definition are:

• Error ε: the deviation of the original randomized algorithm from the pseudorandomized
algorithm.

• Seed-Length l(r): the number of random bits required as input to the pseudorandom gener-
ator.

• Complexity: measured in terms of output string r.

Essentially, the defining property of PRGs is that no algorithm in the class can distingish the
pseudorandom distribution from the uniform distribution. This was what we called the indistin-
guishability requirement for the pseduorandom distribution.

Now, we prove the key lemma that we used in the last lecture to prove the properties of the PRG
constructed for space-bounded derandomization. This construction implied that BPSPACE(s) ⊆
DSPACE(s2). We were already aware of this result but now our proof involved the use of PRGs.
In fact, using a slight variation of this constructed PRG, it can be shown that BSPACE(s) ⊆
DSPACE(s1.5), highlighting the importance of PRGs.

The key lemma in this previous construction was:

Lemma 1. For any distribution Sin on s bits where λ is the second largest eigenvalue of the
expander,

|Sout(Sin, U2r′)− Sout(Sin, G2r′(Ur′ , Ulog d))|1 ≤ 2s · λ

1

Proof. First notice that we can prove the lemma by only considering point distributions for Sin.
Point distributions place all probability in a singles point. Any distribution Sin is a convex com-
bination of point distributions X1, X2, ..., X3 such that Sin =

∑
k pkXk. For a randomized process

Z, if we consider the quantity

∆(Sin) = ‖Z(Sin, U2r′)− Z(Sin, Gr(Ur′ , Ulog d))‖1 ,

we know by the triangle inequality for 1-norm that ∆(Sin) ≤
∑

k pk∆(Xk). So, we only need to
consider a point distribution sin. We defined Sin and Sout as the distribution inputs to and outputs
from, respectively, a pair of blocks. We now define Smid as distribution of states when passing from
the first block of a pair to the second block.

Pr[sin → sout] =
∑
smid

Pr[sin → smid ∧ smid → sout] (1)

=
∑
smid

Pr[(ρleft, ρright) ∈ S × T] (2)

(3)

where S and T are defined as:

S = Ssin,smid
= {ρleft|sin → smid} (4)

T = Tsmid,sout = {ρright|smid → sout}, (5)

meaning that S is the set of all random strings that will cause us to proceed from fixed sin to fixed
smid and T is the set of all random strings that will cause use to proceed from fixed smid to fixed
sout.

For the random distribution, (2) can be written as:

Pr
(ρleft,ρright)←U2r′

[sin → sout] =
∑
smid

µ(S)µ(T),

since ρleft and ρright are chosen independently at random. Similarly, for the pseudorandom distri-
bution (2) is written as:

Pr
(ρleft,ρright)←G2r′ (Ur′ ,Ulog d)

[sin → sout] =
∑
smid

|E(S, T)|
dN

as we are calculating the probability of picking an edge between S and T .
Thus using the expander mixing lemma:∣∣∣∣ Pr

(ρleft,ρright)←U2r′
[sin → sout]− Pr

(ρleft,ρright)←G2r′ (Ur′ ,Ulog d)
[sin → sout]

∣∣∣∣ ≤∑
smid

λ
√
µ(S)µ(T) (6)

This inequality represents the probability of generating a fixed sout. To find the difference in
probability over Sout, we take the sum:

||Sout(sin, random)− Sout(sin, pseudo)| |1 ≤
∑
sout

∑
smid

λ
√
µ(S)µ(T)

2

Using Cauchy-Scwartz, we can bound this summation by:∑
sout

∑
smid

λ
√
µ(S)µ(T) ≤ λ ·

√∑
sout

∑
smid

µ(S)

√∑
sout

∑
smid

µ(T)

Given the definition of S given above, it is clear that
∑

smid
µ(S) = 1 and for every value of

smid,
∑

sout
µ(T) = 1. Since there are 2s choices for sout and smid, we get:

||Sout(sin, random)− Sout(sin, pseudo)| |1 ≤ λ ·
√

2s ·
√

2s = 2s · λ

2 Pseudorandom Generators for Time-Bounded Computations

Pseudorandom Generators are only useful if they can be efficiently computed by a deterministic
machine. A PRG is quick if it can can be computed in time 2O(l(r)) where l(r) denotes a PRG’s
seed length. At first look, this notion of ”quickness” might seem to be too slow (and in the
crytographic setting it would be, as the desirable time there is something polynomial in the size of
the seed length). Also, this may not be efficient enough if our goal is merely to reduce the amount of
randomness needed by a computation. However, our present focus is full derandomization, achieved
by trying all possible seeds and explicitly computing the probability that our algorithm accepts
under the pseudorandom distribution. In this setting, we need 2l(r) time just to look at all possible
seeds, and so the factor 2O(l(r)) overhead in computing the PRGs output is affordable even though
the running time would be more than polynomial if l(r) is more than log.

The results that we obtain for the time-bounded setting differ from the space-bounded setting
in that we do not know of any unconditional, non-trivial results. So, only under some reasonable
hypothesis, can we reduce the amount of randomness for time-bounded comptuation, again by
constructing pseudorandom generators. With this one in mind, the theorem we prove in the next
two lectures is:

Theorem 1. If there is L ∈ E such that CL(n) ≥ 2c·n, for some constant c > 0 where E contains
all decision problems which can be solved in linear exponential time (2O(n)), then BPP = P.

The theorem essentially states that if non-uniformity does not allow you a speed-up of a generic
linear exponential algorithm, then we can derandomize BPP. Our proof of this fact will involve
the construction of a PRG with logarithmic seed length that is computable in polynomial time. In
fact, we will construct a PRG for not only BPP, but an even larger class - Boolean circuits. In
particular the class of circuits we want to fool with our PRGs are circuits of linear size.

Definition 2. An ε-PRG is a family of functions (Gr)r where Gr : {0, 1}l(r) → {0, 1}r such that
for all circuits C of size at most r,∣∣∣∣ Pr

ρ∈{0,1}r
[C(ρ) = 1]− Pr

σ∈{0,1}l(r)
[C(Gr(σ) = 1]

∣∣∣∣ ≤ ε
where ρ and σ are both chosen uniformly at random.

3

Essentially, the definition above says that any circuit of size at most r will have trouble determin-
ing whether its input was sampled from the uniform distribution or the pseudorandom distribution.
We consider two questions that might naturally arise from the definition.

1. Why do want our constructed PRG to fool Boolean circuits when we are interested in fooling
uniform computation? Since BPTIME(t) computation can be mimicked by circuits with size
polynomial in t, we can use our constructed PRG to fool the uniform computaiton also. We
consider Boolean circuits because we want our PRG to succeed in fooling the computations
on all but finitely many inputs, and this is easily captured in the nonuniform setting by
constructing a different circuit for each input where the input is hard-wired and the random
bits are left as inputs to the circuit.

2. Why do we require that our PRG fool linear sized circuits? ? Using the same parameter r for
the size of the circuit and its number of inputs will keep the arguments cleaner, and there is
no harm in allowing the circuit to take more random bits than it needs. Mimicking a uniform
computation with a circuit may yield a circuit that are larger than the number of random
bits it needs, but the computation will not be affected by allowing the PRG to provide more
random bits since the extra bits can be ignored.

We claim that if we have PRG that satisfies this property, then we can derandomize BPP.
Since we are trying all possible seeds and computing the acceptance of the algorithm under the
pseudorandom distribution, this takes time 2l(r). Thus, if we construct a PRG with O(log r) seed
length, we get a polynomial derandomized algorithm, implying BPP = P.

3 Notions of Pseudorandomness - Indistinguishability and Unpre-
dictability

One way to think about the circuits we are attempting to fool is viewing them as a statistical test.
Considering a PRG Gr with seed length l(r) where l(r) < r, where r is the outupt length, then this
distribution is very far from the uniform distribution since the PRG can only produce 2l(r) strings
out of all 2r possible random strings or length r. Thus, given sufficient complexity, there does
exist a statistical test that can distinguish between the uniform and pseudorandom distribution.
But, this statistical test will have high circuit complexity and we only want the pseudorandom
distribution to be computationally indistinguishable from the uniform distribution and so we only
need to show that circuits with low circuit complexity, or simple statistical tests, cannot distinguish
between the pseudorandom and uniform distribution.

In fact, we can restrict the type of statistical tests even further, and the only type of tests we
need to consider are Predictors. A predictor is a small circuit (with size at most r) that looks at a
prefix of its inputs, say i−1 bits, and tries to predict the ith bit. No predictor exists for the uniform
distribution since any circuit succeeds in predicting the ith bit with probability 1/2. What we want
to show is that this unpredictability property implies the desirable indistinguishability property we
discussed earlier for a pseudorandom distribution. To show this, we will show the contrapositive,
that if we have a circuit that can distinguish between the uniform and pseudorandom distribution,
then we can build a predictor that can predict a bit of the pseudorandom distribution, given the
previous bits.

4

Lemma 2. If there exists a circuit C of size at most r such that∣∣∣ Pr
σ∈{0,1}`(r)

[
C(Gr(σ)) = 1

]
− Pr
ρ∈{0,1}r

[
C(ρ) = 1

]∣∣∣ ≥ ε
then there exists an i ∈ {1, . . . , r} and a circuit P of size at most r such that

Pr
σ∈{0,1}`(r)

[
P
(
(Gr(σ))1, . . . , (Gr(σ))i−1

)
= (Gr(σ))i

]
≥ 1

2
+
ε

r
.

Proof. Using the distinguishing circuit C, we will show that there exists a predictor P . We must
decide which bit position i, our predictor P will predict. Consider the hybrid distribution Di(i =
0, ..., r) where for Di, the first i bits are chosen from the output distribution of Gr and the remaining
r − i bits are chosen from the uniform distribution. So, D0 is the uniform distribution for strings
of length r and Dr is the output distribution of Gr. Intuitively, capturing the difference in how the
circuit C behaves between distributions Di−1 and Di, should give us a good idea whether C is able
to predict the ith bit from the first i−1 bits of a pseudorandom sample. Let us argue this formally.
Let PrDi [C = 1] represent the probability that C outputs 1 on a sample from distribution Di, then

ε ≤
∣∣∣Pr
Dr

[C = 1]− Pr
D0

[C = 1]
∣∣∣

=
∣∣∣ r∑
i=1

(
Pr
Di

[C = 1]− Pr
Di−1

[C = 1]
)∣∣∣

≤
r∑
i=1

∣∣∣Pr
Di

[C = 1]− Pr
Di−1

[C = 1]
∣∣∣

This means that ∃i such that |PrDi [C = 1] − PrDi−1 [C = 1]| ≥ ε/r. Let us choose this
i as the index of the bit our predictor will predict and assume without loss of generality that
PrDi [C = 1]− PrDi−1 [C = 1] ≥ ε/r. Now we have that

Pr
[
C
(
(Gr(σ))1, . . . , (Gr(σ))i−1, (Gr(σ))i, ρi+1, . . . , ρr

)
= 1
]

is at least ε/r more than

Pr
[
C
(
(Gr(σ))1, . . . , (Gr(σ))i−1, ρi, ρi+1, . . . , ρr

)
= 1
]

where the probabilities are taken over σ and ρi, ρi+1, . . . , ρr are chosen uniformly at random.
The circuit C appears to be able to recognize when ith bit comes from the pseudorandom

distribution, but it is not a predictor yet because for one, it accepts r bits whereas the predictor
would only accept the first i − 1 bits. However, by an averaging argument, there must be some
setting ρ̃i+1, . . . , ρ̃r to the inputs ρi+1, . . . , ρr such that

Pr
[
C
(
(Gr(σ))1, . . . , (Gr(σ))i−1, (Gr(σ))i, ρ̃i+1, . . . , ρ̃r

)
= 1
]
−

Pr
[
C
(
(Gr(σ))1, . . . , (Gr(σ))i−1, ρi, ρ̃i+1, . . . , ρ̃r

)
= 1
]
≥ ε/r (7)

5

where the probabilities are taken over σ and ρi chosen uniformly at random. We can hard-wire
ρ̃i+1, . . . , ρ̃r into the circuit without affecting the circuit size. This is where nonuniformity is required
as we need to handle each value of r separately.

So from the above discussion we can see that our circuit is ε/r more likely to output 1 when
provided with i pseudorandom bits rather than when it is given i− 1 pseudorandom bits plus one
truly random bit. This observation suggests how we will build our predictor P ′. Given the first i−1
bits (π1, . . . , πi−1) sampled from the pseudorandom distribution, we will flip a coin to determine the
ith bit, calling this value ρi. We then evaluate C(π1, . . . , πi−1, ρi, ρ̃i+1, . . . , ρ̃r) and if this evaluates
to 1, we assume our guess was correct for (Gr(σ)i) and output ρi. Otherwise, we assume our guess
was incorrect and output ρi. To be more exact,

P ′(π1, . . . , πi−1) = ρi ⊕ C(π1, . . . , πi−1ρi, ρ̃i+1, . . . , ρ̃r)⊕ 1.

Now, we prove a last claim whose result will prove the lemma.

Claim 1. Pr
[
P ′
(
(Gr(σ))1, . . . , (Gr(σ))i−1

)
= (Gr(σ))i

]
≥ 1

2 + ε
r where the probability is over σ

and ρi.

Proof. Consider two cases:

1. The output of circuit C does not depend on ρi, meaning C will output 1 or 0 regardless of
ρi’s value.

2. The output of C does depend on ρi. If the actual value xi will produce an output of 1 on C
then P ′ will always guess correctly (outputs 1 ⇐⇒ xi = 1). If xi’s true value will make C
output 0, then our predictor is always wrong.

We need to show that for both cases, |Pr
[
P ′
(
(Gr(σ))1, . . . , (Gr(σ))i−1

)
= (Gr(σ))i

]
|−1/2 is equal

to (7). For the first case, (7) is equal to 0 (since both probabilities will be the same), and
|Pr

[
P ′
(
(Gr(σ))1, . . . , (Gr(σ))i−1

)
= (Gr(σ))i

]
|−1/2 = 0 also since P ′ has 1/2 chance of outputting

the right value since C’s output does not help P ′ in any way.
For the second case, if actual value xi produces an output of 1 on C, then (7) is equal to 1/2

(since the pseudoranom bit (Gr(σ))i causes C’s output to be 1 whereas the random bit ρi has 1/2
chance of causing output to be 1) and here, P ′ is always correct in its prediction so
|Pr

[
P ′
(
(Gr(σ))1, . . . , (Gr(σ))i−1

)
= (Gr(σ))i

]
|−1/2 = 1/2 also. When the actual value xi produces

an output of 0 on C, then (7) is equal to −1/2 (since the pseudoranom bit (Gr(σ))i causes C’s
output to be 0 whereas the random bit ρi has 1/2 chance of causing output to be 1) and here, P ′

is always wrong so |Pr
[
P ′
(
(Gr(σ))1, . . . , (Gr(σ))i−1

)
= (Gr(σ))i

]
| − 1/2 = −1/2 also.

Thus, since (7) is always greater than ε
r , we are done.

This is exactly the behavior we want from our predictor, but P ′ still draws on one random
bit. In order to create a deterministic P we can again take advantage of the fact that we’re in the
nonuniform setting and hard-wire ρi to some value ρ̃i, either 0 or 1, such that the circuit retains its
advantage of ε/r in predicting the ith bit. This yields a predictor P where P (π1, . . . , πi−1) is just

ρ̃i ⊕ C(π1, . . . , πi−1, ρ̃i, ρ̃i+1, . . . , ρ̃r)⊕ 1,

6

which can be expressed as a circuit of the same size as C (possibly with an additional NOT gate,
which we assume doesn’t increase the size of the circuit). This predictor satisfies

Pr
[
P
(
(Gr(σ))1, . . . , (Gr(σ))i−1

)
= (Gr(σ))i

]
≥ 1

2
+
ε

r
,

as desired.

4 Next Time

We continue with our discussion of Time-Bounded Derandomization.

Acknowledgements

In writing the notes for this lecture, I perused the notes by Michael Correll for lecture 16 from the
Spring 2010 offering of CS 710, the notes by Andrew Bolanowski for lecture 17 from the Spring
2010 offering of CS 710, and the notes by Jake Rosin for lecture 14 from the Spring 2007 offering
of CS 710

7

