
CS 710: Complexity Theory 11/15/2011

Lecture 20: Error Correcting Codes

Instructor: Dieter van Melkebeek Scribe: Xi Wu

From the last two lectures we have seen that a language that is hard “on average” implies efficient
derandomization of BPP. In this lecture we begin the development of replacing the requirement
of “average-case hardness” by the “worst-case hardness”. Since requiring worst-case hardness is
weaker than requiring average-case hardness, this gives us more plausible derandomization results
of BPP. The way we achieve this is through error correcting codes (ECC). We give some intuition
of how to use ECCs for our purposes, the properties we need the ECC to satisfy, and discuss pros
and cons of various classical ECCs w.r.t. fully satisfying these properties.

1 Weaker Assumption for Derandomizing BPP?

In the previous lecture we discussed conditional results on time bounded derandomization. We
showed how to transfer circuit lower bounds into derandomization of BPP. To remind you of these
results, we define HL(n) to be the largest s such that circuit of size s cannot correctly compute
more than 1

2 + 1
s fraction of inputs of length n. This notion characterizes the average hardness of

L. The main theorem we proved last time is as follows:

Theorem 1. If there exists L ∈ E and that HL(m) ≥ r2 then there is a quick 1
r -PRG of seed length

`(r) = O(m2) for circuit of size at most r.

By “quick” it means that the generator runs in time linear exponential in seed length ` =
`(r) (i.e. 2O(`(r))). Recall how the generator Gr works. It generates r pseudorandom bits by
concatenating L(σ|Si) for i ∈ [r] where σ is the seed of length ` and S1, S2, . . . , Sr ⊆ [`] are subsets
of size m where the size of pairwise intersection is bounded by log r. Finally it turns out that
S1, . . . , Sr can be constructed efficiently with ` = O(m2) for all r and m ≥ log r.

Now initiating L with different average hardness gives different results of derandomizing BPP.

1. If (∀c > 0)(∃L ∈ E)HL(m) ≥ mc then BPP ⊆ ∩ε>0 DTIME(2n
ε
) = SUBEXP.

2. If (∃L ∈ E)HL(m) ≥ mω(1) then BPP ⊆ DTIME(2n
O(1)

).

3. If (∃L ∈ E)HL(m) ≥ 2m
Ω(1)

then BPP ⊆ QP = ∪k∈N DTIME(2logk n).

4. If (∃L ∈ E)HL(m) ≥ 2Ω(m) then BPP = P.

Let’s take the last statement as an example of how the derandomization works. Let L be the
hard language where HL(m) ≥ 2Ω(m), say HL(m) = 2

1
2
m. Fix an arbitrary BPP language L′ which

requires circuit size r. To derandomize it note that m = c log r for some constant c. By picking
some sufficiently large constant c, in this case c ≥ 4, it ensures that HL(m) ≥ 2

c
2

log r = r
c
2 ≥ r2.

By Theorem 1 we have Gr is an 1
r -PRG with seed length O(m2) = O(log2 r). This puts BPP is

2O(log2 r) = rO(log r) by enumerating all seeds, but this is not polynomial time in r. Fortunately it

1

turns out that for m = c log r, there exists (m, log r)-design with `(r) = O(c2 log r). This allows
enumerating all seeds in time polynomial in r, thus putting L′ in P.

One unsatisfying point of our current state is that requiring average-case hardness is a somewhat
strong condition. What we are going to develop in the following two lectures is to replace average-
case hardness by worst-case hardness, in the following sense. Given a language L′ ∈ E of worst-case
hardness, we construct, via ECC, another language L ∈ E that is hard on average. This would relax
our requirement of average-case hardness to worst-case hardness where it makes our conditional
results of derandomizing BPP more plausible. Before further development, we remark that the
construction of theorem 1 gives us a new proof that BPP ⊆ ZPPNP ⊆ Σp

2 ∩Πp
2.

Corollary 1. BPP ⊆ ZPPNP.

Proof. Consider the BPP algorithm of circuit size r. If we have a language HL(m) = 2Ω(m) then
we can directly use the above generator to derandomize it in time polynomial in r. The difficulty
is that how can we find such L.

The key observation is that we only need m = O(log r), therefore we can guess the characteristic
sequence of a Boolean function f at length m, which is of 2O(log r) = poly(r) bits. Using probabilistic
method, it is straightforward to verify that a random Boolean function at length m has the property
that Hf (m) = 2Ω(m) (actually most of them do).

Now the base ZPP machine does the following, it guesses the characteristic function of a Boolean
function f at length m, and makes a coNP oracle query to to verify that no circuit of size r can
approximate f on more than 1

2 + 1
2Ω(m) fraction of inputs. W.h.p this is the case and then it

continues to do derandomization, otherwise it outputs an “?” saying “unknown”.

2 Outline from Average-Case Hardness to Worst-Case Hardness

Our goal is to construct out of a worst-case hard language L′ an average-case hard language L.
Note that for worst-case hardness CL′(m) = s means (∀C, |C| < s)(∃x, |x| = m)[C(x) 6= L(x)], and
it might be very well possible that a circuit of size < s would fail on very few points. By taking
contraposition, what we would like to have is a statement like the following:

We construct L such that, if we can compute L correctly only on some fraction of inputs, or
equivalently approximate L well enough, then we can compute L′ on every input with a slightly larger
circuit. However now, because computing L′ everywhere has a circuit lower bound, then there is a
circuit lower bound on computing L correctly on certain fraction of inputs.

Now it is somewhat natural to view the membership string χ′ of L′ at lengthm′ as an information
word, and we encode it, using ECC, as the membership string χ of L at some length m. Because of
the nature of ECC, we would have the claim because if we can approximate χ on sufficiently large
fraction of points, then χ′ can be recovered and thus we can correctly compute L′ everywhere: now
the worst-case circuit lower bound of L′ would give us an average-case circuit lower bound of L for
doing this! However, simply using naive ECC to encode χ′ is not enough. Because what we want
is actually in some “local” sense: compute L′(x′) for some x′ of length m′, rather than computing
the characteristic sequence of L′ at length m′. Using naive encoding, we will end up looking at
an encoding of a bit string of length 2m

′
, which is exponentially larger than |x′|. In summary we

would like the ECC to satisfy the following properties:

2

1. It needs to be a binary code, as χ and χ′ are characteristic sequences of L and L′,

2. ECC can handle errors up to 1
2 −

1
HL(m) . Because we want lower bounds even when we can

approximate 1
2 + 1

HL(m) fraction of the inputs.

3. Local decodability. Suppose c is an encoding of s, and we only want to know s[i]. This shall
be done by only querying few locations of c, rather than looking at all of them. This implies
that the decoding must be randomized, otherwise we cannot handle that much error.

4. ECC is computable in time poly(2m
′
). This is because we need L ∈ E so that the derandom-

ization with average-case hardness can be applied. More precisely, if L′ ∈ E and the encoding
can be done in time polynomial in 2m

′
, then we can compute L(x) by encoding L′ at m′ and

then extract the bit at position x, which takes time linear exponential in m. Note that this
condition indicates that poly(2m

′
) ≥ 2m and so m = O(m′).

With these requirements in mind, now we consider classical error-correcting codes to see whether
one of them could satisfy precisely all these. Unfortunately none of them does: each of them is
good at some properties, but fails on some other. It turns out that the final solution that works is
to combine two of them and use list decoding. This will be the topic of the next lecture.

3 Error Correcting Codes

An (N,K,D)-code over alphabet Σ is a mapping E : ΣK 7→ ΣN such that (∀x, y ∈ ΣK) with x 6= y,
dH(E(x), E(y)) ≥ D, where dH denote the relative hamming distance of two code words. Note
that any encoding function is injective because in our setting we want different messages to have
different encodings. Here we use capital letters because N,K are indeed exponentially larger than
the parameter we are interested in: the complexity measure is the length of a single input m, while
the codeword is of length 2m as there are 2m input strings at this length. A code has the following
important parameters:

1. Code rate: K
N , this measures the redundancy we introduce into the code. We’d like this

quantity to be as large as possible, so it will not blow up too much the size of the information
word. The hope is that the rate approaches to 1.

2. Relative distance: δ = D
N , this measures how much error we can detect or correct. Again we

hope this to be large. Note that even with relative distance 1 we can only hope to correct
half errors when using a binary alphabet.

3. The computational complexity of encoding and decoding.

Naturally, increasing code rate means introducing less redundancy which may in turn reduce
the relative distance, thus we can deal with less errors. Conversely, increasing the relative distance
will eventually require more redundancy thus decrease the code rate and increase the computational
complexity of codes. These indicate that we have tradeoffs between the first and the second
parameter, and these tradeoffs have impact on the third parameter.

A q-ary linear code of length N is a subspace of FNq , where Fq = GF(q) is a field with q elements.
In this case, a linear combination of codewords is still a codeword. We use [N,K,D]q to denote a

3

linear (N,K,D)-code over Σ = GF(q). For q = 2 it is called a binary code, and for q = 3 a ternary
code.

Let Σ = {0, 1} be the binary alphabet. Suppose y = E(x) and is sent over a noisy channel,
and the receiver gets z 6= y due to noise. Let’s consider error detection and correction of the code.
For error detection, we mean that the receiver can realize that something is wrong by looking at
z. Because any two codewords are at Hamming distance at least D, so with at most D − 1 bits
corrupted, we are sure z is not any valid codeword, and thus detect an error. If D or more bits are
corrupted then one may end up with another codeword.

For error correction, we mean that the receiver can come up with the unique message x associ-
ated with y. Here the best thing we can do is to find the nearest valid codeword z̃ around z, and
check out the message that z̃ encoded.

If the error is within bD−1
2 c, then the Hamming ball centered at the received word of radius

bD−1
2 c has at most one codeword, which gives unique decoding. Otherwise if z is already more

than bD−1
2 c far away from y then by our assumption that D is the bound of Hamming distance

between codewords, z may correspond to two or more codewords which encode different messages.
This implies that unique decoding is possible up to Hamming distance at most bD−1

2 c.
Now we give some concrete examples of error correcting codes.

3.1 Hadamard Code

Hadamard is a binary code. Given message x ∈ {0, 1}K , we view it as the coefficients of a linear
function Y (a1, . . . , ai) =

∑
1≤i≤K xiai, ai ∈ {0, 1}, and thus the codeword is the function Y , which

is a 2K-vector over GF(2). Precisely, the encoding function E sends x to

(〈a, x〉)a∈(GF(2))K

Clearly N = 2K and the rate is K
2K

(terrible), and the relative distance is δ = D
N = 1

2 , which is the
best we can hope for. To see this suppose x and y differ at certain locations. Let E(x) and E(y) be
corresponding encodings. We would like to show Pra∼{0,1}K [〈a, x〉 = 〈a, y〉] = 1

2 . W.l.o.g suppose
x1 6= y1, then ∑

1≤i≤K
aixi =

∑
1≤i≤K

aiyi

⇐⇒ a1x1 + a1y1 =
∑

2≤i≤K
ai(xi + yi)

⇐⇒ a1(x1 + y1) =
∑

2≤i≤K
ai(xi + yi)

⇐⇒ a1 =
∑

2≤i≤K
ai(xi + yi)

Note that x and y are fixed, so for any choices of a = (a1, . . . , an), with probability 1
2 one of two

choices for a1 makes the equality hold.
Let’s consider the decoding of the Hadamard code. One nice property of the Hadamard code

is that it’s locally decodable. Given some encoding Y , and we want to know xi. Because Y
encodes a linear function with coefficients x = (x1, . . . , xK) we would consider Y (ei) = xi. However

4

it might be very well possible Y (ei) is corrupted. We observe that Y is a linear function so
Y (ei) = Y (a+ ei)−Y (a). Further because we are over GF(2), so Y (ei) = Y (a+ ei) +Y (a) for any
a. So the following decoding algorithm intuitively works if a large fraction of encodings are still
correct:

Algorithm 1: Local-Hadamard-Decoding
(1) Pick a random a ∈ {0, 1}K .
(2) Output Y (a+ ei) + Y (a).

Suppose a fraction of δ bits is corrupted. So we will have an error if either Y (a) or Y (a + ei)
is incorrect. Because a and a + ei are both uniformly distributed among all points, so the error
probability is bounded from above by 2δ. We need the error to bounded away below 1/2 so 2δ < 1/2
thus δ < 1/4. Setting δ = 1/4− ε, this gives error probability 1

2 − 2ε.
Although the Hadamard code is locally decodable, it fails our other requirements. First, it can

only correct error up to 1/4 and thus not a fraction 1
2−

1
HL(m) . Second, the rate is too large: we want

linear blowup while the Hadamard code gives exponential blowup. Of course, local decodability is
desirable and actually we will use it as a building block in our final construction.

Next we introduce the so-called Reed-Solomon code which improves the rate using a larger field.

3.2 Reed-Solomon Code

Compared to the Hadamard code, the Reed-Solomon code uses a larger field GF(q) of some prime
power q and views x as the coefficients of a univariate polynomial over GF(q) of degree at most
K − 1. Precisely we map x to p(Z) =

∑
1≤i≤K xiZ

i−1, where Z is a formal variable taking values
in GF(q). We encode P (Z) by the vector (P (a))a∈GF(q). This indicates that N = q and K ≤ q.
Consider relative distance, any univariate polynomial of degree K−1 over GF(q) has at most K−1
roots and so δ ≥ 1− K−1

q .
By controlling K, q we can full-fill the error-correction requirement of large fraction of errors.

However there are two issues with Reed-Solomon code. First it is not a binary code. The other issue
is that its local-decodability is not very good. Recall that local-decodability means that the amount
of information used to recover one position should be much less than the amount of information
used to recover the whole message. However even recovering one coefficient requires looking at K
positions, which is already sufficient to recover the whole polynomial.

3.3 Reed-Müller Code

The final code we introduce is the Reed-Müller code, which uses multivariate polynomials. In a
sense, Hadamard code fixes the number of variables, the function must be linear and the field size
is 2. Reed-Solomon code fixes the number of variables to be 1, the degree and field size can vary,
and Reed-Muller code allows all these three: number of variables, degree and field size to vary.

In a q-ary Reed-Müller code, the information word is interpreted as a low-degree polynomial
in q variables and evaluating it at all q-tuples of field elements yields the encoding. Intuitively the
information is packed on a cube of q dimensions. Why this would help local decoding? It turns
out that for decoding one can draw a random line through the point in the cube where we want
to evaluate the original polynomial, querying the received word at all points along this line to get

5

a univariate polynomial, and then decode it using Reed-Solomon decoder. In this way, much less
amount of information is needed compared to recovering the whole multivariate polynomial. More
details will covered in the next lecture.

4 Next Time

Next time we will finish the discussion of Reed-Müller codes and present the worst-case to average-
case reduction which combines Hadamard code, Reed-Müller code and list decoding.

Acknowledgements

In writing the notes for this lecture, I perused the notes for lecture 18 by Dmitri Svetlov from the
Spring 2010 offering of CS 710, as well as lecture 16 by Matt Elder from Spring 2007 offering of
CS 810.

6

