
CS 710: Complexity Theory 12/6/2011

Lecture 25: Counting vs. Alternation

Instructor: Dieter van Melkebeek Scribe: Brian Nixon & Sachin Ravi

This lecture will continue on the topic of counting, #P, and how counting relates to the poly-
nomial hierarchy in terms of power.

Recall by definition, #P consists of all f : {0, 1}∗ → N where ∃c ∈ N, ∃V ∈ P such that
f(x) = |Sx| (the size of the solution set) Sx = {y ∈ {0, 1}|x|c |〈x, y〉 ∈ V }.

Last time we introduced two theorems but did not prove either. We will complete a proof for
both in this lecture. First, we will show that we can approximate #P using the second level of the
polynomial time hierarchy. In the previous class we proved a this fact for the third level, Σp

3.

Theorem 1. (∀f ∈ #P)(∀a > 0) there exists a function g computable in poly time with oracle

access to Σp
2 where |f(x)− g(x)| ≤ f(x)

|x|a

Second we want to show that the power of exact counting yields all of PH. In fact, we can get
the entire polynomial hierarchy using only one call to a #P oracle.

Theorem 2. PH ⊆ P#P[1]

Crucial to both proofs is the existence of efficient universal families of hash functions that are
small. These are small function families that behave in certain respects as if they were random,
allowing efficient random sampling. By small we mean we can describe each function h with a small
number of bits, O(nc +m). For completeness, we repeat the definition from last lecture.

Definition 1. A family of hash functions H = {h : {0, 1}nc → {0, 1}m} is universal if ∀y1 6= y2 ∈
{0, 1}nc

, ∀z1, z2 ∈ {0, 1}m, Prh∈RH [h(y1) = z1 ∧ h(y2) = z2] = 1
22m

.

Note that this is the probability in the definition is the same the probability that we would get
if h picked output values for y1 and y2 uniformly at random.

1 Proof of Theorem 1

Sx {0, 1}m

{0, 1}n

We want to prove (∀f ∈ #P)(∀a > 0)∃g computable in poly time with access to Σp
2 where

|f(x)− g(x)| ≤ f(x)
|x|a .

Our method will proceed in a similar fashion to the proof showing BPP ⊆ Σp
2 back in lecture

15. It will consist of hashing the set of witness strings Sx ⊆ {0, 1}n
c

into a set of roughly the same

1

size without collisions. As f(x) = |Sx|, getting a target set of roughly the same size will provide
our approximation.

If 2m is large relative to |Sx|, we expect there are no collisions in the image of Sx because our
hash functions offer similar behavior to random assignment. When 2m is small enough, the image
of Sx should cover all of {0, 1}m. Our method will take a small number of hash functions and try
to cover {0, 1}m. Finding the value where this breaks down gives us 2m as an approximation of the
size of Sx.

Recall from last lecture that |Sx| ≥ 2m+1 ⇒ Prh1,...hm∈RH [∀z ∈ {0, 1}m, z ∈
⋃m

i=1 hi(Sx)] ≥ 1
2 .

Also, m|Sx| ≤ 2m−1 ⇒ ∀h1, ...hm ∈ H, Prz∈R{0,1}m [z ∈
⋃m

i=1 hi(Sx)] ≤ 1
2 . This second inequality is

a simple application of the union bound.
In this way, (∃h1, ...hm ∈ H)(∀z ∈ {0, 1}m)[z ∈

⋃m
i=1 hi(Sx)] serves as a distinguisher between

the two two states. While this may seem like a Σp
2 predicate, the test [z ∈

⋃m
i=1 hi(Sx)] cannot

be done simply in polynomial time. We need to transform it using an additional clause into
(∃x, i)[z = hi(x)] to verify, making it a Σp

3 predicate. Note that if we could swap the leading ∃ and
∀ phrases we could reduce this to Πp

2.
Let us return to the beginning and modify the second inequality to m|Sx| ⇒ ∀h1, ...hm ∈

H,Prz1,...z`∈R{0,1}m [∀j, zj ∈
⋃m

i=1 hi(Sx)] ≤ 1
2`

by increasing the number of points in the target

we sample. Thus Prz1,...z`∈R{0,1}m [(∃h1, ...hm ∈ H)|∀j, zj ∈
⋃m

i=1 hi(Sx)] ≤ # of choices of h1,...h`

2`
by

the union bound. We want this to be less than 1 to be useful. Note that the first inequality is
unchanged by this modification as the property holding for all z lower bounds the probability of
the property holding for any set of values {z1, ...z`}.

Consider the following predicate:

(∀z1, ...z` ∈ {0, 1}m)(∃h1, ...hm ∈ H)[{zj}mj=1 ⊆
m⋃
i=1

hi(Sx)] (1)

This is a Πp
2 predicate. If the property holds then we can pick h1, ...hm to form a covering

set. If not, then by a probablistic argument we can pick a choice that causes this to fail. Let m∗

be the smallest m for which the above predicate fails. Here (m∗ − 1)2m
∗−2 < |Sx| < 2m

∗+1 and
|Sx| < 2m

∗+1 < 8(m∗ − 1)|Sx| < 8nc|Sx|. Let our estimate be 2m∗+1.
The relative error of the polynomial is non-trivial as |Sx| can be exponential in n. We need to

tighten this up. Consider changing the intial problem slightly.
Consider f ′ = fn

d
. f ′ ∈ #P as the class is closed under multiplication (using concatenation).

Running the above algorithm for f ′ yields |S′x| < 2m
∗+1 < 8nc+d|S′x|. |S′x| = |Sx|n

d
.

This lets us approximate f(x) with 2
m∗+1

nd . The error is ∼ 2
(c+d) logn

nd ∼ 1 + (c+d) logn
nd . A choice

of d large enough shrinks this second error formula to cn−a. This is the bound we wanted.

2 Exact Counting

We now prove the following result:

Theorem 3. PH ⊆ P#P[1].

We will prove this theorem in the following three parts:

2

1. NP ⊆ RPUNIQUE-SAT. UNIQUE-SAT is the promise problem defined on SAT formulae that
have exactly one or zero satisfying assignments, with the positive instance being the uniquely
satisfiable formulas. THE UNIQUE-SAT oracle is guaranteed to give the correct answer
on such specified formulae but can act arbitrarily for formulas with multiple satisfying as-
signments, with inconsistent answers on such queries that are outside of the promise being
allowed.

2. Using the first part, we show that PH ⊆ BPP⊕P.

3. And, we finish the proof by showing BPP⊕P ⊆ P#P[1].

In this lecture, we show the proof for parts 1 and 2 and leave part 3 for the next lecture.

2.1 Proof of NP ⊆ RPUNIQUE-SAT

Since SAT is NP-complete, we will show how to solve SAT in RPUNIQUE-SAT and then the result
follows. We use hash functions again for this proof. Consider a NTM solving SAT that runs in time
nc. We look at the set of all possible assignments for the input forumla and consider applying a
hash function on these. The idea is to try to choose the range of the hash function about the size of
Sx, the set of all satisfying assignments for the formula. If we can do this, then a randomly chosen
hash function with high probability will map one of these satisfying assignments to 0m, giving us
a potential UNIQUE-SAT oracle query.

We first bound the probability that a randomly chosen hash function maps a unique satisfying
assignment to 0m. As before, let Hm be a universal family of hash functions mapping {0, 1}nc

to {0, 1}m. Then, the probablity that a randomly chosen h from Hm maps a unique satisfying
assignment to 0m is given by

Pr
h∈Hm

[
∑
y∈Sx

Xh(y)=0m = 1] = Pr
h∈Hm

[
∑
y∈Sx

Xh(y)=0m ≥ 1]− Pr
h∈Hm

[
∑
y∈Sx

Xh(y)=0m ≥ 2]

For the first term, we have

Pr
h∈Hm

[
∑
y∈Sx

Xh(y)=0m ≥ 1] ≥ Pr
h∈Hm

[
∑
y∈Sx

Xh(y)=0m −
∑
y1 6=y2

y1,y2∈Sx

Xh(y1)=0m ∧ Xh(y2)=0m] (2)

= |Sx| ·
1

2m
−
(
|Sx|

2

)
· 1

22m
. (3)

by considering the first two terms of the inclusion-exclusion principle of the probability and using
the pariwise independence property of the hash functions. For the second term, we have

Pr
h∈Hm

[
∑
y∈Sx

Xh(y)=0m ≥ 2] ≤
(
|Sx|

2

)
· 1

22m
.

Thus,

Pr
h∈Hm

[
∑
y∈Sx

Xh(y)=0m = 1] ≥ |Sx| ·
1

2m
− 2 ·

(
|Sx|

2

)
· 1

22m
(4)

≥ Sx
2m
·
(

1− |Sx|
2m

)
. (5)

3

Now, using the fact that for a function f(t) = t(1− t), the max occurs at t = 1
2 , we get

Pr
h∈Hm

[
∑
y∈Sx

Xh(y)=0m = 1] ≥ 1

3
· 2

3
=

2

9
,

where m can be picked such that t ∈ [13 ,
2
3] since |Sx|

2m increases by 2 for each value of m.

Using the above analysis, we have a RPUNIQUE-SAT algorithm to solve SAT.

INPUT: formula φ

(1) foreach m = 0, 1, · · · , nc
(2) Pick h ∈ Hm uniformly at random.
(3) Let ζ = (∃y ∈ Sx)h(y) = 0m

(4) ζ is NP-query so convert it into equivalent SAT formula.
(5) Query UNIQUE-SAT oracle with ζ.
(6) if Oracle returns yes then Use self-reducibility to find y that satisfies ζ
(7) if φ(y) = 1 then Output ”YES”
(8) Output ”NO”

2.2 Proof of PH ⊆ BPP⊕P.

From the previous proof, we have that NP ⊆ BPP⊕P and the proof relativizes so we have that

NPA ⊆ (BPP⊕P)A

for some oracle A. From Homework 1, we know NP ⊆ BPP =⇒ PH ⊆ BPP and the proof of this
fact relativizes so

NPB ⊆ BPPB =⇒ PHB ⊆ BPPB

for some oracle B.
Letting the oracle A = ⊕P, we get

NP⊕P ⊆ (BPP⊕P)⊕P.

In general, giving an additional oracle O2 to an oracle machine which already has access to O1

can be solved by the base machine by giving it access to O1 and OO2
1 .

Thus,

NP⊕P ⊆ (BPP⊕P)⊕P = BPP⊕P,⊕P
⊕P

(6)

= BPP⊕P, (7)

where we leave it as an exercise to prove ⊕p⊕P = ⊕P.
Letting the oracle B = ⊕P, because NP⊕P ⊆ BPP⊕P =⇒ PH⊕P ⊆ BPP⊕P, this means

PH ⊆ PH⊕P ⊆ BPP⊕P.

4

3 Next Lecture

We finish the proof of PH ⊆ P#P[1] and begin talking about Interactive Proof Systems.

Acknowledgements

In writing the notes for this lecture, we perused the notes by Mushfeq Khan for lecture 23 from the
Spring 2010 offering of CS 710, and the notes by Ashutosh Kumar for lecture 24 from the Spring
2010 offering of CS 710.

5

