
CS 710: Complexity Theory 12/09/2011

Lecture 26: Arthur-Merlin Games

Instructor: Dieter van Melkebeek Scribe: Chetan Rao and Aaron Gorenstein

Last time we compared counting versus alternation and showed that #P could be approximated
by Σ2, not just Σ3. We also demonstrated the power of relativization by adapating a result from
HW1. This lead us to conclude that NP⊕P ⊆ BPP⊕P.

Today we will conclude our discussion on the power of counting, and complete the proof by
demonstrating the inclusions PH ⊆ BPP⊕P and BPP⊕P ⊆ P#P[1].

We will also introduce the notion of interactive proof systems which models computation as a
result of interaction between two parties. We make some remarks on how various modifications
of the definition affect the class of languages this model can compute. We’ll define public/private
coin protocols, and first show that the graph non-isomorphism problem admits an interactive proof
using private coins. After that, we’ll also show that there is an interactive proof for the same
problem that uses public coins.

We will conclude with the power of bounded -rounds interactive proof systems, formalized as
Arthur-Merlin games.

1 Proof of PH ⊆ P#P[1]

Recall the overall view of our result:

1. PH ⊆ BPP⊕P

2. BPP⊕P ⊆ P#P

We showed 1 last time, and today we will show 2. In doing so we will exploit the closure properties
of #P. First, however, we will isolate and consider the BP operator on complexity classes.

1.1 Deterministic reduction of BPP⊕P to #P

Given a language L in BPP⊕P, we wish to determine if x ∈ L by making a single query to a #P
function. We first show that we can separate out the randomized portion of L from the counting
portion. This will be useful in performing the reduction.

Definition 1. Let C be a complexity class. We define the BP operator to give a new complexity
class of languages, where BP · C = {L|(∃c > 0)(∃L′ ∈ C)

x ∈ L⇒ Pry∈|x|c [〈x, y〉 ∈ L′] > 2/3,

x /∈ L⇒ Pry∈|x|c [〈x, y〉 ∈ L′] < 1/3 }

Notice that BP ·P = BPP, so this is a reasonable definition of the BP operator. The alternative
characterization of BPP⊕P we use is given by the following.

Claim 1. BPP⊕P = BP · ⊕P.

1

Proof. We show that for any complexity class C, BPPC = BP ·PC . The result then follows by using
⊕P as C and the fact that P⊕P = ⊕P.

Consider a BPP machine that can ask queries to a C language. Without changing the compu-
tation, the machine can guess its random bits at the beginning the computation before proceeding.
What is left is a PC predicate. Now consider a BP · PC language. The BPPC machine computing
the same language simply generates enough random bits to be the second input of the PC machine
and then simulates that machine.

Now consider a language L ∈ BP · ⊕P which we hope to solve in P#P[1]. By definition, there is
some f ∈ #P such that

x ∈ L⇒ Pr|y|=nc [f(x, y) ≡ 1 (mod 2)] > 2/3

x /∈ L⇒ Pr|y|=nc [f(x, y) ≡ 0 (mod 2)] < 1/3

We would like to create a #P function which sums f over all y such that we can detect the gap in
probability. Our key claim is the following:

Claim 2. Let f ∈ GapP. Then there is a function g ∈ GapP such that

f(z) ≡ −1 (mod 2)⇒ g(z, 0M) ≡ −1 (mod 2m)
f(z) ≡ 0 (mod 2)⇒ g(z, 0M) ≡ 0 (mod 2m)

where m is itself some power of 2 and z = 〈x, y〉 from our definition of BP.

Before proving this claim, we see how it allows us to complete the construction. Notice that if
f(z) ≡ −1 (mod 2), then the last m bits of g(z, 0m) are 000...001; if f(z) ≡ 0 (mod 2), the last m
bits are 000...000. We would like to sum up −g(z) for all z = 〈x, y〉 in such a way that the results
do not “spill over” past the last m bits. Because we must sum over 2n

c
many y, we need to pick

m > nc to ensure there is no spill over. Namely notice that if m > nc, then

x ∈ L⇒
∑
|y|=nc −g(x, y, 0M) (mod 2M) > 2

32|x|
c

x /∈ L⇒
∑
|y|=nc −g(x, y, 0M) (mod 2M) < 1

32|x|
c
.

In other words, if m > nc and h(x) =
∑
|y|=|x|c g(z,m) then

x ∈ L⇒ −h(x) mod 2m ∈ [232n
c
, 2n

c
]

x /∈ L⇒ −h(x) mod 2m ∈ [0, 132n
c
]

In fact, by picking m > nc we ensure there is a single bit of the sum that we can check to distinguish
between the two cases. We claim that the sum, and h(x), are in #P. It is just a uniform sum, and
#P is closed under that.

All that remains is the proof of the key claim. We will be doing something slightly different:
we will claim that ∃g ∈ GapP, and h(x) ∈ GapP. This seems odd: wouldn’t that mean there are
2, rather than 1, query to the #P oracle? We will show how to resolve that.

Proof of Claim 2. Say h = h+− h−, we break up h into its two components. Clearly that function
is in GapP. We re-write h−(z) = #AccM (z)—the number of accepting paths. Note how we can
trivially fix the length of a TM’s computation path. So we know that the full number of computation

2

paths is #AccM (z) = 2|z|
d −#RejM (z). Clearly that negative value is a #P query. Now we can

redefine h(x) as a sum of two #P queries, meaning it is in #P:

h(x) = #AccM+(z) + (#RejM−(z)− 2|z|
d
)

All that remains now, is to find some f that fits the initial requirements we describe when we
introduced our key claim, so that we can build g from it.

We will show that, given k mod 2m, we can have a transformation which preserves:

t ≡ −1 mod 2m ⇒ Q(t) ≡ −1 mod 22m

t ≡ 0 mod 2m ⇒ Q(t) ≡ 0 mod 22m

We want Q to be a constant-degree polynomial, Q ∈ Z[t].
Once we have Q, we’re done, we can simply apply it repeatedly. If m = 1, then we only need

a logarithmic number of doubles from applying Q. Because Q ∈ Z(t), if t ∈ GapP we’re still in
GapP. The running time is multiplied by deg(Q) for each application of the operation, and we only
apply the operation a logarithmic number of times. That is only a polynomial overhead factor, so
this works. Basically, we will begin with t = f(z), and then apply Q log(m) times to get g. Does
there exist such a Q?

Say t ≡ b + q2m mod 2m (with b = −1 or 0). Consider simply squaring the equation: t2 ≡
b2 + 2bq2m mod 22m, and other terms are modded out. In this first case, if t = 0, clearly we are
still ≡ 0 under this new mod. But that is not the case for t = −1. Now consider t3 ≡ b3 + 3b2q2m,
and the other terms are modded out. If you consider

Q(t) = −2t3 − 3t2 (1)

Then you will find that both 0 and −1 are preserved! Hence, that’s our new polynomial. Note that
we needed GapP for the negative coefficients. That concludes the proof.

By allowing Q to go up to degree 4, we can get a different polynomial that also works that also
only has nonnegative coefficients. Such a polynomial obviates the need to use GapP, requiring only
#P.

2 Interactive Proof Systems

Definition 2 (Interactive Proof Systems). An interactive proof system for L is a protocol (P, V),
where P is called the prover, and V is called the verifier. P is an all-powerful(i.e., no restrictions on
its computational resources), randomized Turing machine, and V is a randomized Turing machine
running in time polynomial in the input length. In a protocol (P, V), we have:

1. P, V have read-only access to the input x.

2. P, V have read-only access to separate random-bit tapes.

3. P can write messages on tape TP→V which V has read access to.

4. V can write messages to P on tape TV→P which P has read access to.

5. x ∈ L iff V accepts.

3

6. At any one time, exactly one of V and P is active, and the protocol defines how they take
turns being active.

The protocol (P, V) also has to satisfy the following conditions:

• completeness(easy to prove membership of members):

x ∈ L =⇒ Pr[(V ↔ P) accepts x] ≥ c

• soundness(hard to prove membership of non-members):

x /∈ L =⇒ (∀P ′) Pr[(V ↔ P ′) accepts x] ≤ s

where the probabilities are over all coin flips of P and V ; (V ↔ P) refers to an interaction between
the P and V ; c, s are the completeness and soundness parameters of the interactive proof system,
respectively. c is normally set to 2/3 and s to 1/3.

For the soundness condition, we choose to quantify over all provers since the critical issue is that
the verifier itself needs to be sufficiently robust even against “malicious” provers that do not follow
the protocol. Note that we can also apply the amplification technique to boost the probability of
deciding correctly, and the verifier would still be poly-time. For completeness, c = 1 means perfect
completeness and this means that no true statement is rejected, and is something we strive for.

We make the following observations:

1. Randomness for P is not essential. For each turn it takes, since it is all-powerful, it can figure
out the coin flips that will maximize the probability of the verifier accepting, and perform
the computation corresponding to those coin flips.

2. On the other hand, the randomness of V is essential, as otherwise, we get only NP. If V is
deterministic, then it accepts/rejects with probability 1. Then, using the above fact that we
can assume P is deterministic, and that c > 0, we get that (V ↔ P) always accepts members
of L. Since V can only read and write a polynomial number of symbols, the length of the
transcript of the interaction (V ↔ P) is polynomial in the length of x, and is a polynomial-
length certificate of x’s membership. In particular, the sequence of responses of P convinces
V of x’s membership.

3. If we assume perfect soundness, we get NP as well. This is because x ∈ L iff there exists
a sequence of random “questions” by the verifier and a sequence of “answers” by P that
convinces V of x’s membership. The converse holds by the assumption of perfect soundness.
The other direction has a similar proof as above.

4. Without interaction, since the verifier does not receive any information from the prover, we
get BPP.

5. By requiring the verifier’s random bit tape to be separate from the prover’s, the proofs we
defined are actually private coin interactive proofs. Public coin interactive proofs are where
the verifier tosses coins and reveals them to the prover after it’s turn is up.

The corresponding complexity class is IP = {L|L has an interactive proof system}.

4

3 Power of interaction

Let us now illustrate what we can do with interaction and randomness in the verifier. In particular,
we would like to be able to obtain short interactive proofs for problems for which we do not know
a short standard proof. One example of such a problem is graph non-isomorphism(GNI).

Theorem 1. GNI ∈ IP

Remember that GI is one of the problems that we think are NP-intermediate. Also, GI has
short standard proofs. This theorem by itself will not show that the set of tautologies have short
interactive proofs(coNP vs IP). GI is probably not NP-complete, and equivalently, GNI is probably
not coNP-complete. In fact, we will give some evidence that GI is not NP-complete.

Before we begin with the proof, we give an intuitive analogy for the way the IP protocol for GNI
works. One day, Merlin shows a sword to King Arthur and claims that it is Excalibur. However,
Arthur is unconvinced since to him it looks exactly like his own sword. So, Arthur would like
Merlin to convince him that at least he could tell the difference between Excalibur and Arthur’s
sword. To this end, Arthur turns around, hides the swords and flips a coin. Based on the coin flip,
he produces one of the swords and asks Merlin whether it is the purported Excalibur or Arthur’s
sword. If Merlin answers incorrectly, then Arthur knows that Merlin had lied. Otherwise, he
repeats the procedure until he is convinced.

Note that the usage of the name “Arthur” for the verifier and “Merlin” for the prover is standard
in the literature, but for public coin systems. The system below uses private coins.

Proof Sketch. Given 2 graphs (G0, G1), we would like to show that they are non-isomorphic. An
initial idea, based on the analogy above, is to have V flip a coin, produce one of the graphs G based
on the coin flip and ask P which of G0, G1 it is. But this is too easy since V could compare G with
G0, G1 by itself. So, instead we have V pick G at random, permute the vertices of G randomly,
and ask P to identify G.

Using ≡ to denote isomorphism, if G0 6≡ G1, then P can identify G by trying all permutations
on G0, G1 and since G0 6≡ G1 exactly one permutation on exactly one of the 2 graphs give G.
Otherwise, there exists permutations π, σ such that π(G0) = σ(G1) = G, and so P has no way of
identifying which of G0, G1 was used to produce G. The best it can do then is flip a coin and guess
an answer.

So, this protocol satisfies perfect completeness and has s ≥ 1/2. We can decrease s by increasing
the number of rounds.

We remark that since the verifier is essentially requiring the prover to determine the result of its
coin toss, it is crucial that the protocol uses private coins. We next consider interactive protocols
that remain secure even when the verifier’s random coins are made public. Although the above
protocol for GNI does not work in this setting, there is an alternate protocol that does work with
public coins.

4 Bounded-round interactive proof systems

The key idea for the transformation from private-coin protocols to public-coin protocols can be
found in the Lower Bounds Protocol : It is a public-coin protocol for the set lower bound problem,

5

which is a promise problem with positive instances Ip and negative instances In:

Ip =
{
〈x, a〉

∣∣∣ |Sx| ≥ a }
In =

{
〈x, a〉

∣∣∣ |Sx| ≤ (1− ε)a
}

Here, ε = ε(n) = 1
poly(n) .

Firstly, we review the Lower Bound Protocol. We have some subset Sx ⊆ {0, 1}n whose size
we would like to estimate. We have a universal family of hash functions from n bits to m bits,
where the range of the hash functions is roughly the same as the size of Sx. Then, there is a good
chance that a hash function chosen randomly from that family will map Sx “evenly” on {0, 1}m.
In particular, a few hash functions from that family will suffice to cover {0, 1}m as an image of Sx.
The key point is that if Sx is sufficiently big relative to {0, 1}m, then it is possible, otherwise we
need much more functions.

Recall that we made the Π2 predicate, ∀z∃h.... We observed that in the “yes” case, it was true
for all z, so regardless of the hash functions chosen it would work. In the “no” case, most of the z
don’t hold.

That precisely gives us the IP protocol we want. The public coinflips are analagous to the z in
our approximate counting setting.

This gives us the AM protocol, where the coins are public. Now we would like to demonstrate
that GNI ∈ AM.

We can obtain from this an AM protocol to distinguish between the case when |Sx| ≥ 2m and
the case when |Sx| ≤ 2m−1. Arthur picks some points pi in the range uniformly at random and
reveals them to Merlin. Merlin then responds with hash functions hi and points p′i in Sx along with
certificates of their membership in Sx. Finally, Arthur verifies the membership of points p′i in Sx
and that the image of p′i under the hash functions indeed covers all the points pi.

Applying some modifications to the analysis of the original protocol gives us the following
results: the AM protocol accepts with probability 1 in the case that |Sx| ≥ 2m, and in the other
case accepts with probability at most 1/3.

Proof sketch. Define Si = {H|H ≡ Gi} and S = S0 ∪ S1.
The key property that we use is that if G0 ≡ G1, then S0 = S1 so |S| = |S0| = |S1|, and

otherwise, |S| ≥ 2 min{|S0|, |S1|}.
Since for GNI, we would like to distinguish between 2 sets of size differing by at least a factor of

2, we can adapt the above AM protocol for GNI. However, we need to know the sizes of S0, S1, S
to use it. By group theory, |Si||Aut(Gi)| = n! since Si are the cosets of the subgroup Aut(Gi) in
the symmetric group on n points.

Define Ti = {(H,π)|H ≡ Gi and π ∈ Aut(Gi)} and T = T0 ∪ T1. By the above, |Ti| = n!. So, if
G0 ≡ G1, |T | = n! and otherwise |T | = 2n!.

Since we have a constant factor gap in the sizes, we can use approximate counting to distinguish
the 2 sets, such that the larger set corresponds to the non-isomorphic case. We modify it into an
AM protocol as above and we are done.

In the case where Arthur makes some choices, and Merlin responds, and then Arthur concludes
with a deterministic decision procedure is AM. Other problems can be formulated as Merlin going
first, that is MA. We can denote the “rounds” as AMA. . . and consider if more rounds adds more
power.

6

5 Next Lecture

Next lecture we will show that number of rounds does not matter, that MA⊆AM, and so with some
additional reasoning conclude that all bounded interaction IP is in AM.

We will also demonstrate that IP=PSPACE, and introduce the PCP theorem, a powerful variant
of this idea.

6 Acknowledgements

Many thanks to Jeff Kinne and Ashutosh Kumar for their notes from Spring 2010.

7

