
CS/Math 240: Intro to Discrete Math 05/11/2011

Solutions to the Final Exam

Instructor: Dieter van Melkebeek

Problem 1

Part a

Let D be the set of all people.
From the definition of R we see that (x, y) ∈ R−1 if and only if “x is a biological child of y”.

Then (x, z) ∈ R ◦ R−1 if and only if there is some y such that x is the biological child of y (i.e., if
(x, y) ∈ R−1), and y is the biological mother of z. In that case x and z have the same mother, so
they are siblings.

Since everybody has a biological mother, every x ∈ D is actually related to itself, too. Just let
y be the biological mother of x and note that (x, y) ∈ R−1 as well as (y, x) ∈ R.

The relation is symmetric. In fact, any relation of the form R◦R−1 is symmetric (see part (b)).
Finally, the relation is transitive. Any pair of siblings has the same biological mother, so if x and

z are siblings, and z and w are also siblings, it follows that x and w are siblings too. More formally,
say (x, z), (z, w) ∈ R◦R−1. Since the relation R−1 is injective and our hypothesis implies that x and
z have the same mother, as well as z and w have the same mother, we have (y, x), (y, z), (y, w) ∈ R.
Then (x, y) ∈ R−1 and (y, w) ∈ R, and we see that (x, w) ∈ R ◦ R−1.

The equivalence classes are the sets of people who have the same mother. That is, we have a
class Cy = {x | (y, x) ∈ R} for every mother y ∈ D.

Part b

The relation R ◦ R−1 is not always reflexive. Consider the empty relation, and pick any x ∈ D.
Since R is empty, there is no y ∈ D such that (x, y) ∈ R, which means that x cannot be related to
itself.

The relation R ◦ R−1 is always symmetric. Suppose (x, z) ∈ R ◦ R−1. That means that there
is some y ∈ D such that (x, y) ∈ R−1 and (y, z) ∈ R. But then (z, y) ∈ R−1 and (y, x) ∈ R, so
(z, x) ∈ R ◦ R−1.

The relation R◦R−1 is not necessarily transitive. For example, suppose we have D = {a, b, c, d, e}
and R = {(b, a), (b, c), (d, c), (d, e)}. Then note (a, b) ∈ R−1, so (a, c) ∈ R ◦R−1. Also, (c, d) ∈ R−1,
so (c, e) ∈ R ◦ R−1. But (a, e) are not related by R ◦ R−1 because in R−1, a is only related to b,
and (b, e) /∈ R.

Problem 2

Let v be a vertex of odd degree and consider the connected component C = (V, E) that it belongs
to. We know that for any graph,

∑

v∈V deg(v) = 2|E|, and we derived as a corollary that every
graph has an even number of vertices of odd degree. Since v is a vertex of odd degree in C, there
are at least 2 vertices of odd degree in C. Let u 6= v be another vertex of odd degree in C. Since
C is connected, there is a path from v to u.
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Problem 3

The first problem appears in the application of Euler’s formula. This only holds when the graph is
connected, but the graph for this problem is not connected.

Second, it is not true that all simple cycles in the graph have length 4. Going around the
boundary of the 4-vertex subgraph that looks like K4 minus one edge yields a simple cycle of
length 4. Thus, the claim that every face has 3 edges on its border is incorrect.

There is another reason why the latter claim is incorrect, as the fact that the border of a face
forms a simple cycle does not hold for the outer face of a disconnected graph. Indeed, in this case
the outer face of the graph has 10 edges on its border (all edges except for the diagonal one in the
four-vertex subgraph), whereas the largest simple cycle has length 4.

Finally, the implication |V | − 1

3
|E| = 2 ⇒ |E| > 3|V | is incorrect. For example, if |V | = 3 and

|E| = 3, this implication does not hold. A graph with |V | = |E| = 3 is for example the graph K3.

Problem 4

Part a

For the graph on 4 vertices without edges, we can pick any color for each vertex. Since there are k
colors, the number of colorings is k4.

Part b

We have k choices for the color of vertex 1. Given that color, we have k − 1 choices for the color
of vertex 2, then k − 2 choices for the color of vertex 3, and finally k − 3 choices for the color of
vertex 4. The generalized product rule applies and tells us that the total number of colorings is
k(k − 1)(k − 2)(k − 3) = k!/(k − 4)!.

Part c

Since vertex 5 is connected to all vertices, it is quite convenient to pick its color first. We have k
options for this color. After the vertex 5 is colored, we can treat the subgraph with vertices 1, 4, 5
as K3, where one of its vertices, 5, is already colored. Now we have k − 1 options for the color of
vertex 1, and since that vertex is connected to both 1 and 5, we get k − 2 options for the color of
4. Similarly, we get k − 1 options for the color of 2 and k − 2 options for the color of 3. It follows
by the generalized product rule that we have k(k − 1)2(k − 2)2 colorings.

Part d

First let’s focus on the subgraph with vertices 1, 2, 4. This graph is K3, so there are k(k−1)(k−2)
ways to color its vertices. Now vertex 3 must have a color that differs from colors of 2 and 4. Those
two colors are different, so we have k − 2 choices for the color of 3. Hence, the total number of
colorings is k(k − 1)(k − 2)2.
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Problem 5

Part a

We construct an NFA for this language using two NFAs for simpler languages: (i) the language of
strings that have exactly two ones, and (ii) the language of strings that have an even number of
zeros.

To construct an NFA that accepts strings containing exactly two ones, we start with the DFA
in Figure 1a. The states s0, s1 and s2 indicate that 0, 1 and 2 ones have been read so far,
respectively. After reading a third one, we go to the garbage state s3 and stay there for the rest of
the computation. Now the key observation here is that since we are constructing an NFA, we can
omit a transition from s2 to the garbage state. If our NFA reads a third 1, it has nowhere to go
from s2, and, therefore, rejects right away, which is correct behavior.

We constructed an automaton accepting strings that have an odd number of ones in lecture,
and the construction of an automaton that accepts strings with an even number of zeros looks
almost the same. We show it in Figure 1b.

Finally, we add an initial state sinit. From there, we have transitions into the NFAs described
in the previous two paragraphs. In particular, we copy the transitions from states s0 and s′e so that

s0start s1 s2 s3

1

0

1

0 0

1

0, 1

(a) DFA M1 for strings with exactly two ones.

s′estart s′o
0

0

1 1

(b) DFA M2 for strings with an
even number of zeros.

sinitstart

s0 s1 s2

s′e s′o

0

1

1

0

1

0 0

1
0

0

1 1

0

(c) NFA for part (a)

s0estart s0o

s1e s1o

s2e s2o

s3e s3o

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

(d) DFA for part (b)

Figure 1: Automata for problem 5.
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the same transitions can be made from sinit. We have seen an idea like this in the constructions of
NFAs for the concatenation of two languages and for the Kleene closure of a language. The final
automaton is in Figure 1c. Since the NFA can correctly guess whether the string has two ones or
an even number of zeros, it can correctly choose whether to go to a state of the modified machine
M1 or to a state of M2 after reading the first input symbol. On the other hand, if a string is not
in the language, it does not matter whose machine’s state our automaton goes to after reading the
first input symbol because both M1 and M2 are going to reject that string.

Part b

Our language is really a union of two languages. We can use the construction from class to design
a DFA for this language. The result is in Figure 1d.

Part c

We saw a regular expression for a string containing an even number of occurrences of some symbol
in lecture as well as on the homework. For an even number of occurrences of 0 in a binary string,
we use the regular expression (1∗01∗0)∗1∗.

A string with exactly two ones may start with some number of zeros, then contain a one, then
have some more zeros, another one, and end with another sequence of zeros. One regular expression
for such a string is 0∗10∗10∗.

To get a regular expression for our language, we just take the union of the two regular expressions
we constructed earlier, and obtain

(1∗01∗0)∗1∗ ∪ 0∗10∗10∗.

Problem 6

Part a

We are going to count the set S of binary strings of length n with an even number of ones in two
different ways. For the rest of this problem, we assume our strings are binary without saying so.

We can pick 2k out of n positions in a string of length n for k ∈ {0, . . . , ⌊n/2⌋}. Put ones in
those positions, and put zeros everywhere else. This process yields a string of length n with an
even number of ones. We can pick 2k positions for the ones in

(

n
2k

)

ways, and we can pick 2k ones
for k ∈ {0, . . . , ⌊n/2⌋}. Since the set of strings with 2i ones and the set of strings with 2j ones
are disjoint whenever i 6= j, we can use the sum rule to count the number of strings with an even

number of ones using
∑⌊n/2⌋

k=0

(

n
2k

)

.

Now let T be the set of strings of length n − 1, and let p : {0, 1}n−1 → {0, 1} be the parity
function. That is, p(x) = 1 if x contains an odd number of ones, and is 0 otherwise. Let f : T → S
be defined by f(x) = xp(x), i.e., x concatenated with the parity of x. This function is well-defined.
If x has an odd number of ones, p(x) = 1, so the number of ones in xp(x) is one more than the
number of ones in x, which is even. If x has an even number of ones, p(x) = 0, so concatenating x
and p(x) produces a string with an even number of ones.

Observe that f is total since we defined it for every string in T . Also, f is injective. Suppose
f(x) = f(y). This means that the first n − 1 bits of f(x) and f(y) are the same, and those bits
are x and y, respectively, so x = y. Finally, f is surjective. Let z be a string of length n with an
even number of ones, and let x be the first n − 1 bits of z. If the last bit of z is 1, x has an odd
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number of ones, so p(x) = 1 and xp(x) = z. If the last bit of z is 0, x has an even number of ones,
p(x) = 0, and xp(x) = z. Thus, f is a bijection from the set of strings of length n− 1 to the set of
strings of length n with an even number of ones. Since there are 2n−1 strings of length n− 1, there
are 2n−1 strings of length n with an even number of ones by the bijection rule.

Since both of our approaches counted the number of elements in the set S, we have 2n−1 =

|S| =
∑⌊n/2⌋

k=0

(

n
2k

)

, which is what we wanted.

Part b

The binomial theorem states that

(x + y)n =
n

∑

ℓ=1

(

n

ℓ

)

xℓyn−ℓ. (1)

Plugging in (x, y) = (1, 1) and (x, y) = (−1, 1), respectively, into (1) yields the following two
equations:

2n =
n

∑

ℓ=0

(

n

ℓ

)

1ℓ1n−ℓ (2)

0 =
n

∑

ℓ=0

(

n

ℓ

)

(−1)ℓ1n−ℓ (3)

Now we can add (2) and (3) to get

2n =
n

∑

ℓ=0

(

n

ℓ

)

(1ℓ1n−ℓ + (−1)ℓ1n−ℓ) =
n

∑

k=0

(

n

k

)

(1ℓ + (−1)ℓ)1n−ℓ. (4)

Since 1ℓ + (−1)ℓ is 2 if ℓ is even and 0 if ℓ is odd, and since the largest term with an even value of
ℓ in (4) is 2⌊n/2⌋, we can rewrite (4) as

2n =

⌊n/2⌋
∑

k=0

(

n

2k

)

2,

and divide by 2 to get

2n−1 =

⌊n/2⌋
∑

k=0

(

n

2k

)

.
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