CS/Math 240: Intro to Discrete Math

Homework 5

Instructor: Dieter van Melkebeek

Guidelines:

This assignment covers program analysis, recursion, and recurrences. It is due on $3 / 10$ at the beginning of class. Good luck!

Questions:

1. Consider the following program specification:

Input: An integer $n \geq 0$ and an array $A[0 . . n-1]$ of integers.
Output: The array A sorted from smallest to largest.
Consider the following implementation, known as bubblesort - the algorithm consists of a number of phases that send a bubble from left to right that swaps two neighboring elements if they are out of order.
$\operatorname{BubbleSort}(n, A)$
(1) $m \leftarrow n$
(2) \quad while $m>1$
(3) $\quad \ell \leftarrow 0$
(4) $\quad i \leftarrow 0$
(5) while $i<m-1$
(6) if $A[i]>A[i+1]$
(7) \quad swap $A[i]$ and $A[i+1]$
(8) $\quad \ell \leftarrow i+1$
(9) $\quad i \leftarrow i+1$
(10) $\quad m \leftarrow \ell$
(a) State and prove adequate loop invariants for the inner and outer while loops.

Hint: What can you say about the position of the largest element in A after one iteration of the outer while loop? What can you say about $A[m . .(n-1)]$?
(b) Use the invariants to prove partial correctness and termination.
(c) Determine exactly the maximum number of times the test in line (5) is executed as a function of n.
2. Consider the following program:
$\operatorname{FAStExp}(a, b)$
(1) if $b=0$ then return 1
(2) if b is even then return Square $(\operatorname{FastExp}(a, b / 2)$
else return $a \cdot \operatorname{FastExp}(a, b-1))$

The program makes use of the subroutine $\operatorname{Square}(x)$, which simply computes $x \cdot x$ and returns that value.
(a) Show that FastExp correctly implements the following specification:

Input: Integers a, b with $a \neq 0$ and $b \geq 0$.
Output: a^{b}.
As usual, this involves establishing partial correctness and termination.
(b) How many recursive calls are made when FastExp is called with $b=2^{k}$ for some integer k ? How often will two elements be multiplied?
(c) How do the answers to the previous question change when you replace line (2) in the code for FastExp by the following: "return $\operatorname{FastExp}(a, b / 2) \cdot \operatorname{FastExp}(a, b / 2)$ "?
3. Recall that the Fibonacci sequence is defined as the unique solution to the following two sets of conditions.

Initial conditions: $X_{1}=X_{2}=1$.
Recurrence condition: $(\forall n \geq 3) X_{n}=X_{n-1}+X_{n-2}$.
In class we stated the following closed form for the Fibonacci sequence (as a suggested exercise on induction):

$$
\begin{equation*}
F_{n}=\frac{\phi^{n}-(1-\phi)^{n}}{\sqrt{5}} \tag{1}
\end{equation*}
$$

where $\phi=\frac{1+\sqrt{5}}{2}$ denotes the golden ratio.
The expression (1) came out of the blue. In this problem, we'll derive the expression and give an alternate proof.
(a) Determine all reals c such that $X_{n}=c^{n}$ satisfies the recurrence condition (but not necessarily the intial conditions).
(b) Show that if $X_{n}=A_{n}$ and $X_{n}=B_{n}$ satisfy the recurrence condition, then so does $X_{n}=\alpha \cdot A_{n}+\beta \cdot B_{n}$ for every choice of reals α and β.
(c) Use parts (a) and (b) to show that the Fibonacci sequence satisfies (1).
4. Solve the following recurrence: $A_{0}=3, A_{1}=7$ and $A_{n}=3 A_{n-1}-2 A_{n-2}$ for all integers $n \geq 2$.

