Homework 9

Instructor: Dieter van Melkebeek

Guidelines:

This assignment covers trees, graph coloring, and finite state machines. It is due on $4 / 21$ at the beginning of class. Good luck!

Questions:

1. Show that a connected graph $G=(V, E)$ with $|V|=|E|+1$ is a tree.
2. Consider the following program, which takes as input a tree $T=(\{1,2,3, \ldots, n\}, E)$ on $n \geq 2$ vertices, and outputs an array $A[1 . . n-2]$.

TreeRepresentation (T, n)

(1) $\quad G \leftarrow T$
(2) for $i=1$ to $n-2$
(3) $\quad \ell \leftarrow$ leaf in G with the smallest label
(4) $A[i] \leftarrow$ unique neighbor of ℓ in G
(5) $\quad G \leftarrow G \backslash \ell$
(6) return $A[1 . . n-2]$
(a) Construct an algorithm that takes as input an integer $n \geq 2$ and an array A of length $n-2$ with entries in $V \doteq\{1,2,3, \ldots, n\}$, and produces a tree $T=(V, E)$ such that TreeRepresentation $(T, n)=A$.
(b) Is the construction always possible? Is the answer uniquely determined? What can you conclude about the number of distinct trees on the vertex set $V=\{1,2,3, \ldots, n\}$?
3. For a given graph G, we define the chromatic function $P_{G}: \mathbb{N} \rightarrow \mathbb{N}$ as the function that maps a natural number x to the number of valid colorings of G with at most x colors.
(a) Determine P_{T} for all trees T on n vertices.
(b) Let $e=(u, v)$ be an edge in G, and let G_{e}^{\prime} denote the result of contracting e in G. Argue that $P_{G_{e}^{\prime}}(x)$ equals the number of valid colorings of $G \backslash e$ with at most x colors in which u and v get assigned the same color.
(c) Show that P_{G} is a polynomial. Hint: Use induction.
(d) Express the following in terms of characteristics of G : (i) the degree of P_{G}, (ii) the coefficient of the highest-order term, (iii) the coefficient of the term of degree one less.
4. For any nonnegative integer k, define D_{k} as the language of all ternary representations of multiples of k over the alphabet $\{0,1,2\}$. Leading zeroes are not allowed.
Give finite automata accepting the following languages:

$$
\begin{aligned}
& D_{0} \\
& D_{1} \\
& D_{2} \\
& L_{1}=\left(D_{2} \cup\{\epsilon\}\right) \backslash\{0\} \\
& L_{2}=L_{1} D_{2} \\
& L_{3}=L_{1}^{*}\{0\} \\
& L_{4}=\left(D_{2} \backslash\{0\}\right)\left\{x x \mid x \in\{0,1,2\}^{*}\right\} \cup\{0\}
\end{aligned}
$$

5. In a monastery each monk is given a bowl with 15 red beads and 12 green beads. Each day at noon, a monk must do one of two things:

- Exchange: If he has at least 3 red beads in his bowl, then he may exchange 3 red beads for 2 green beads.
- Swap: He may replace each green bead in his bowl with a red bead and replace each red bead in his bowl with a green bead. That is, if he starts with r red beads and g green beads, then after he performs this operation, he has g red beads and r green beads.

A monk may leave the monastery only when he has exactly 5 red beads and 5 green beads in his bowl.
(a) Model this process using a finite state machine.
(b) Show that no monk can ever leave the monastery.

Extra credit: Determine the maximum number of distinct states a monk can be in during his life.

