Homework 10

Instructor: Dieter van Melkebeek

Guidelines:

This assignment covers finite automata and regular expressions. It is due on $5 / 3$ at the beginning of class. This is the last assignment you need to turn in. Congratz on finishing the course and good luck!

Questions:

1. Give regular expressions for each of the languages from problem 4 of HW 9.
2. Show that if L is a regular language over the alphabet Σ, then so is the set of all strings in L that have no nontrivial extension in L, i.e., all strings $x \in L$ for which there is no string $y \neq \epsilon$ such that $x y \in L$.
3. For a given language L over an alphabet Σ, consider the equivalence relation R_{L} from problem 3 of HW 7.
(a) Show how to construct a (not necessarily finite) automaton M_{L} that accepts L where the states of M_{L} are the equivalence classes of R_{L}.
(b) Show that for any finite automaton $M=\left(S, \Sigma, \nu, s_{0}, A\right)$ and any two strings $x, y \in \Sigma^{*}$, if $\nu\left(s_{0}, x\right)=\nu\left(s_{0}, y\right)$ then x and y belong to the same equivalence class of $R_{L(M)}$.
(c) Conclude that L is regular iff the number of equivalence classes of R_{L} is finite, and that in the latter case the minimum number of states of any finite automaton accepting L equals the number of equivalence classes of R_{L}.
(d) Construct the equivalence classes of $R_{D_{6}}$, where D_{6} denotes the language over $\{0,1,2\}$ defined in problem 4 of HW 9 . Also construct a finite automation for D_{6} with 6 states. How do these states relate to the states of the automaton M_{6} in the model solutions for problem 4 of HW 9 ?
4. In class we showed how to transform a nondeterministic finite automaton with k states into an equivalent deterministic finite automaton with no more than 2^{k} states. The goal of this problem is to show that in some cases the exponential blowup in the number of states is inherent.
Let k be a positive integer. Consider the language L_{k} consisting of all strings over the alphabet $\{1,2, \ldots, k\}$ that do not contain every symbol of the alphabet. Prove that any deterministic finite automaton that accepts L_{k} has at least 2^{k} states but that there exists a nondeterministic finite automaton with $k+1$ states that accepts L_{k}.
5. Given a regular expression R, is it always possible to rewrite it in such a way that all unions are disjoint? In other words, can you always construct a regular expression R^{\prime} such that $L(R)=L\left(R^{\prime}\right)$ and such that for any subexpression of the form $R_{1}^{\prime} \cup R_{2}^{\prime}$ in R^{\prime}, the languages $L\left(R_{1}^{\prime}\right)$ and $L\left(R_{2}^{\prime}\right)$ are disjoint?

Extra Credit:

Determine the minimum number of states of a finite automaton accepting the language D_{k} from problem 4 of HW 9 as a function of k.

