Homework 10

Instructor: Dieter van Melkebeek

Guidelines:

This assignment covers finite automata and regular expressions. It is due on 5/3 at the beginning of class. This is the last assignment you need to turn in. Congratz on finishing the course and good luck!

Questions:

- 1. Give regular expressions for each of the languages from problem 4 of HW 9.
- 2. Show that if L is a regular language over the alphabet Σ , then so is the set of all strings in L that have no nontrivial extension in L, i.e., all strings $x \in L$ for which there is no string $y \neq \epsilon$ such that $xy \in L$.
- 3. For a given language L over an alphabet Σ , consider the equivalence relation R_L from problem 3 of HW 7.
 - (a) Show how to construct a (not necessarily finite) automaton M_L that accepts L where the states of M_L are the equivalence classes of R_L .
 - (b) Show that for any finite automaton $M = (S, \Sigma, \nu, s_0, A)$ and any two strings $x, y \in \Sigma^*$, if $\nu(s_0, x) = \nu(s_0, y)$ then x and y belong to the same equivalence class of $R_{L(M)}$.
 - (c) Conclude that L is regular iff the number of equivalence classes of R_L is finite, and that in the latter case the minimum number of states of any finite automaton accepting Lequals the number of equivalence classes of R_L .
 - (d) Construct the equivalence classes of R_{D_6} , where D_6 denotes the language over $\{0, 1, 2\}$ defined in problem 4 of HW 9. Also construct a finite automation for D_6 with 6 states. How do these states relate to the states of the automaton M_6 in the model solutions for problem 4 of HW 9?
- 4. In class we showed how to transform a nondeterministic finite automaton with k states into an equivalent deterministic finite automaton with no more than 2^k states. The goal of this problem is to show that in some cases the exponential blowup in the number of states is inherent.

Let k be a positive integer. Consider the language L_k consisting of all strings over the alphabet $\{1, 2, \ldots, k\}$ that do not contain every symbol of the alphabet. Prove that any deterministic finite automaton that accepts L_k has at least 2^k states but that there exists a nondeterministic finite automaton with k + 1 states that accepts L_k .

5. Given a regular expression R, is it always possible to rewrite it in such a way that all unions are disjoint? In other words, can you always construct a regular expression R' such that L(R) = L(R') and such that for any subexpression of the form $R'_1 \cup R'_2$ in R', the languages $L(R'_1)$ and $L(R'_2)$ are disjoint?

Extra Credit:

Determine the minimum number of states of a finite automaton accepting the language D_k from problem 4 of HW 9 as a function of k.