> CS/Math 240: Intro to Discrete Math 4/3/2011

> Grading Key for Midterm 2
> Instructor: Dieter van Melkebeek

Problem 1 (5 points)

- Part 1-3 points
- Part 2-1 point
- Part 3-1 point

Problem 2 (5 points)

- Part 1-1 point
- Part 2-1 point
- Part 3-2 point
- Part 4-1 point

Problem 3 (2.5 points)

- Part 1-1.5 point
- Part 2-1 point

Problem 4 (5 points)

- Part 1-1 points
- Part 2-2 points
- Part 3-2 points

Problem 5 (2.5 points)

- 0.3 points for every correct answer
- 0.1 point for attempting

Extra Credit Problem (2 points)

- Part 1-0.5 points
- Part 2-0.5 points
- Part 3-1 point

Common Mistakes

- For problem 1, part 1, giving the invariant as $\mathrm{i} \leq \mathrm{m} \leq \mathrm{j}$ is not sufficient to prove partial correctness.Also, you are required to state an invariant that is strong enough to show that BinarySearch() returns the first appearance of x in A. You should be careful not to make an assumption that the elements of A are distinct; " x does not appear in $\mathrm{A}[0 \ldots \mathrm{i}]$ or $\mathrm{A}[\mathrm{j}+1 \ldots \mathrm{n}-1]$ " is an example of a wrong invariant which makes that assumption.
- For problem 1, part 3, if a check for $\mathrm{A}[\mathrm{m}]=\mathrm{x}$ is made before the recursive call then the index m returned will not necessarily be the index of the first occurance of x in the array.
- On problem 2c, you need to argue that $\operatorname{gcd}(b, a(b+1))=\operatorname{gcd}(a, b)$. Also a proof of partial correctness and termination is essential to prove that the algorithm works.
- For problem 3, just mentioning the recurrence relation is not sufficient. You need to argue how you arrived at the recurrence relation.
- On problem 4a (the Fibonacci algorithms), some students mistook the array references for recursive calls, and as such came to an incorrect answer for this problem.

