CS/Math 240: Intro to Discrete Math 3/27/2011
Solutions to the Second Midterm Exam

Instructor: Dieter van Melkebeek

Problem 1

This question deals with the following implementation of binary search.

Function BinarySearch(n, A, )

Input: An integer n > 1, an array A[0..n — 1] of integers that is sorted from smallest to
largest, and an integer x
Output: —1 if z does not appear in A, otherwise the first index ¢ such that A[i] = z
1 1+—0;7—n—1
(2) while i < j do
®  me [(i+])/2]
(4) if Ajm| <z theni«—m+1

(5) else j — m
6) if A[i] =z then return i
(7 else return —1
Part 1

We prove the following invariant.

Invariant 1. After every iteration of the loop, 0 < i < j < n — 1. Furthermore, if x is in the
array, its first appearance is in Ali..j].

Proof. When the program begins, it initializes i = 0 and j =n — 1. Thus, 0 <¢ < j <n —1 holds.
Because the only valid indices are between 0 and n — 1 inclusive, it also follows that if x is in A, it
is in A[é..j] in this case.

Now suppose that the invariant holds after some iteration of the loop. Consider the next
iteration of the loop. Let 7' and j’ be the values of 7 and j after that iteration, respectively.

If i = j, there isn’t going to be another iteration, so assume i < j. Since m = [(i + j)/2], we
have i < m < j. In fact, since i # j, we have i < m < j, and m + 1 < j. Now there are two cases
to consider.

Case 1: Alm| < z. In this case, we set i/ = m + 1 and j' = j. We proved in the previous
paragraph that : < m +1 < j, so ¢/ < j/. We also know that 0 <7 < j < n — 1 by the induction
hypothesis, so 0 < 7/ < 5/ < n — 1 holds too.

Since A[m| < = and x is in A, the first occurrence of x is at index greater than m because A is
sorted. Thus, x it appears at index m + 1 or higher. By the induction hypothesis, we also know
that x first appears at index j or lower, so setting i = m + 1 and 7' = j guarantees that if z is in
A, its first occurrence is in A[¢'..5'].



Case 2: A[m] > x. In this case we set i/ =i and j' = m. We proved that i <m < j, so i’ < j'.
Combining this with the induction hypothesis tells us that 0 < i’ < j' <n — 1.

Since A[m| > z, x first appears at index m or lower because A is sorted. Furthermore, the
induction hypothesis tells us that the first occurrence of x is at index i or more, so setting i = ¢
and 7/ = m maintains the invariant. O

Part 2

Assume that the algorithm terminates. This means the loop ended, and the loop condition implies
i > j. By Invariant 1, we also have ¢ < j, so ¢ = j. Furthermore, Invariant 1 says that if z is in
the array, its first occurrence is in Afi..j]. Since ¢ = j, this tells us that its first occurrence is at
index 4. The algorithm returns ¢ in this case, which is correct. Conversely, if = is not in the array,
Ali] # z, so the algorithm correctly returns —1. This proves partial correctness.

Part 3

We describe the recursive version of BinarySearch as RecursiveBinarySearch below. We need to
introduce the bounds of the array range we are searching as input, so we have them as parameters
instead of n. We must do this because recursive calls are going to search only parts of the array A.
We still need the parameters A and = as before.

Function RecursiveBinarySearch(i, j, A, x)

Input: An integer n > 1, an array Ali..j] of integers that is sorted from smallest to largest,
and an integer x
Output: —1 if x does not appear in A, otherwise the first index ¢ such that Afi] =z

(1) if i = j then

2) if Afi] = = then return ¢

(3) else return —1

@ m— [(i+7)/2]

(5) if A[m] < = then return RecursiveBinarySearch(m + 1,7, A, x)
(6) else return RecursiveBinarySearch (i, m, A, x)

Now the calls BinarySearch(n, A, z) and RecursiveBinarySearch(0,n — 1, A, x) are equiva-
lent.

Problem 2

Part 1

Function GCDa(a, b)

(1) if a = b then return a
(2) if a < b then return GCDa(b — a,b)
(3) else return GCDa(a,a — b)




This algorithm doesn’t correctly compute the greatest common divisor. In particular, it does
not terminate on input (1,2). When called with this input, the algorithm makes a recursive call on
line 2 with input (2 — 1,2) = (1,2). This is the same input as the original input, so the algorithm
just keeps calling itself with input (1,2) and never terminates and makes no progress towards a
solution.

Part 2

Function GCDb(a, b)
1) if a>bthena<«a—1>

(2) elseb—b—a
(3) if a = b then return «
(4) else return GCDb(a, b)

This algorithm also doesn’t work. Consider the input (a,b) = (1,1). Since a = b, the first
condition is false, so line 2 executes, and we now have (a,b) = (1,0). Since a # b, the algorithm
makes a recursive call on line 4 with input (a/,) = (1,0). Now o’ > ¥, but ¥ = 0, so @’ doesn’t
actually change on line 1 in the recursive call. Again, a’ # b, so the next recursive call is with
input (1,0) again. We see that the algorithm makes an infinite chain of recursive calls with this
input, and thus never terminates.

Observe that the input (1,0) to the recursive call doesn’t satisfy the preconditions.

Part 3

Function GCDc(a, b)

(1) if a = b then return a
(2) if a < b then return GCDc(a,b — a)
3) else return GCDc (b, a(b+ 1))

This algorithm works correctly. To show this, we prove partial correctness and termination.

Before we prove partial correctness, let’s prove an additional fact about greatest common divi-
sors. Recall that if a,b are positive integers and a < b, then ged(a,b) = ged(a,b — a). We use this
fact to show by induction that ged(a,b) = ged(b, a(b+ 1)). In particular, we prove the following
lemma.

Lemma 1. For all k such that 0 < k < a, ged(b,a(b+ 1)) = ged(b, (a — k)b + a)).

Proof. For the base case k = 0, note that a(b+ 1) = ab+ a = (a — 0)b + a, so ged(b,a(b+ 1)) =
ged(b, (a — 0)b + a) holds.

Now suppose ged(b,a(b + 1)) = ged(b, (a — k)b + a) and that k& < a (we make the latter
assumption because we only need to prove the lemma for k£ < a, and this assumption allows us
to invoke the fact we state in the next sentence). Recall that for any x,y such that z < y, we
have ged(z,y) = ged(z, y — x). Note that a > 0 and k < a, so (a — k)b + a > b, which means that



ged(b, (a—k)b+a) = ged(b, (a—k)b+a—0b). We can rewrite the second argument as (a—k)b+a—b =
(a—k—1)b+a=(a— (k+1))b+ a, sowe have ged(b, (a — (k +1))b+ a) = ged(b, (a — k)b + a),
and the latter is equal to ged(b, a(b+ 1)) by the induction hypothesis. O

To complete the proof that ged(b, a(b+ 1)) = ged(a, b), just use Lemma 1 with k£ = a. Then we
get ged (b, a(b+ 1)) = ged(b, (a — a)b+ a) = ged(b,a) = ged(a, b).

Now we are ready to prove partial correctness.

First assume a = b. Then the algorithm returns a on line 1. This is the correct result because
a divides a = b, and no integer greater than a divides a.

Now suppose a # b. If a < b, then both a and b — a are positive integers. Also, if a and b are
positive integers, then so are b and a(b+1). It follows that all recursive calls to GCDc are with inputs
that satisfy the preconditions, which means we can assume they return the correct values. Since
we know that ged(a, b) = ged(a,b—a) when a < b, and since we showed ged(a,b) = ged(b, a(b+1)),
the correct value returned by the recursive calls is actually ged(a,b), and the algorithm returns
that.

Before we start the proof of termination, we observe that the first argument to any recursive
call to GCDc is at most as large as the first argument to the original call. If the call is made from line
2, the first argument stays the same, and if the call is from line 3, the first argument is b < a, so it
decreases. Thus, to show termination, it suffices to show that line 3 is reached after some number
of recursive calls. This will allow us to use strong induction on the value of the first argument to
show termination.

For the base case, consider an input (a,b) with a = 1. The algorithm keeps making recursive
calls on line 2, with first argument equal to 1 and second argument decreasing by one in each call.
Thus, after b — 1 recursive calls, the first and the second arguments are equal, and the algorithm
returns from line 1 in that recursive call. All the other recursive calls terminate, one by one, right
after that.

Now suppose that the algorithm terminates whenever the value of the first argument is m such
that m < a. Consider a call to GCDc with input (a + 1,b). We show by cases that GCDc terminates
on this input too.

Case 1: b < a+1. The next call is with b as the first argument, and this call leads to termination
by the induction hypothesis. The algorithm GCDc returns right after that recursive call returns.

Case 2: b=a+ 1. The algorithm returns right away in this case.

Case 3: b > a+ 1. The second argument, b, decreases by a nonzero integer amount in the next
recursive call (from line 2). The second argument keeps decreasing by this amount in subsequent
recursive calls until, after |b/a] recursive calls, it becomes less than or equal to the first argument.
At that point we reach one of the first two cases, which we have shown lead to termination. Thus,
the algorithm terminates in this case as well.

This completes the proof of the inductive step, and proves termination.

Part 4

Consider the input (3,2), and note ged(3,2) = 1. The algorithm returns 2, which isn’t correct. To
see this, observe that the first recursive call is from line 3, and the input is (2,6). The two further
recursive calls made on this input are with inputs (2,4) and (2,2). The last recursive call returns
2, which is also what the original call returns.



Function GCDd(a, b)

(1) if a = b then return a
(2) if a < b then return GCDd(a,b — a)

(3) else return GCDd (b, ab)
Problem 3
Part 1

Cy is 1; the empty sequence is the only length 0 sequence. C is 2; either of the sequences 1 or 0
satisfy the requirements.
To reason about C),, we will look by cases to all possible first numbers in a sequence S in C,,.

Case One: S starts with 0

In this case, the final n — 1 numbers in S must have no two consecutive 1s, but other than
that, there are no restrictions on their form. This is because the initial 0 can be followed by
a string of length n — 1 that has not consecutive 1s and starts with either a 1 or a 0. So the
total number of strings fitting this case is equal to Cj,_1.

Case Two: S starts with 1

In this case, S’s second number cannot be 1, because S would then start with 11. So S
actually starts with 10. Then, the final n — 2 numbers must have no two consecutive 1s, but
other than that, there are no restrictions on their form. So the total number of strings fitting
this case is equal to Cp_o.

These two cases cover all possibilities for a sequence S in C),, and they are disjoint (no S can
start with both 1 and 0). So C), = C,—1 + Cp—a.

Part 2

The above recurrence is simply a shifted version of the Fibonacci sequence, where C), = F,11. This
can be argued by induction on n. The base cases n = 0 and n = 1 hold since Cy = 1 = F5» and
C1 = 2 = F3. The induction step follows because the recurrence equation for C), is the same as for
F,.

Problem 4

1. The program performs one addition operation lines (4) and (5). These lines are executed
every time the loop condition is evaluated to be true. The initial difference between n and i
is m — 3 as 7 is initialized to 3. After each iteration of the loop, this difference goes down by
one. So, there would be n — 2 iterations before ¢ becomes greater than n. Hence, in all there
would be 2(n — 2) additions.

2. The provided program is recursive. So we would set up a recurrence to solve this problem.
Let T'(n) be the number of additions required for computing F,. No additions are performed



for n < 2. So, we have T'(1) = T(2) = 0. For computing F,, where n > 2, we make
two recursive calls, and the results obtained from those recursive calls. Therefore, T'(n) =
Tn—1)+T(n—-2)+1.

Now, we need to solve the recurrence obtained. The recurrence is closely related to the one
for the Fibonacci sequence but isn’t exactly the same. Let us evaluate T'(n) for a few values

of n.
TB)=T2)+T(1)+1=04+0+1=1
T4)=TB)+T(2)+1=140+1=2
TH)=TA4)+TB)+1=2+1+1=4
T6)=T0HB)+TA4)+1=4+2+1=7
T(7)=TO6)+TGB)+1=7T+4+1=12

If you look carefully, you realize that for all the n for which we have evaluated T'(n), T'(n) =
F, — 1. Hence, we conjecture that T'(n) = F, — 1 ¥n > 1. We prove this claim using
induction on n. As base case, we have n = 1,2. Since F; = 1,F, = 1, the base case
holds. Next, assume that V2 < k < n, T'(k) = F, — 1. We prove T'(n + 1) = F,4; — L.
We know that T'(n + 1) = T'(n) + T'(n — 1) + 1. Using induction hypothesis, we get that
Tn+1)=F,—1+F,_1—1+1=F,+F,_1—1=F,;; — 1. This completes the induction
step. Hence, by strong induction, we have shown that the number of additions required for
computing F}, by the given program is F,, — 1.

3. In this problem we need to develop an algorithm for computing Fibonacci numbers using
O(logn) additions and multiplications. We can write a solution that makes use of the given
recurrences to carry out the required computations. The function NaiveFastFib is one such
solution.

Function NaiveFastFib(n)

Input: n - integer, n > 1

Output: F,
(1) if n <2 then return 1
(2) if n is even then
(3) a < NaiveFastFib(n/2 — 1)
(4) b < NaiveFastFib(n/2)
(5) return (2a+ )%
(6) else
(7) a < NaiveFastFib((n +1)/2)
(8) b < NaiveFastFib((n —1)/2)
(9) return axa+bx*b

The problem with this solution is that it needs O(n) additions and multiplications to carry
out the required computations. This can be shown using the recursion tree for the algorithm.
The recursion tree will have O(n) nodes with a constant local cost associated with each node.
Hence, we would get a total cost of O(n).



In order to achieve a total cost of O(logn), we need to avoid the second recursive call that
we make to the NaiveFastFib() function. To do this, we compute the two values required
for computation of F;, in a single recursive call. The algorithm follows —

Function FastFib(n)

Input: n - integer, n > 1

Output: F,, F 1
(1) if n =1 then return 1,1
(2) else if n =2 then return 1,2
(3) else if n is even then
(4) (a,b) < FastFib((n/2) — 1)
(5) c—a+b
(6) return (2a + b)b, b% + ¢?
(7) else
(8) (a,b) < FastFib((n —1)/2)
(9) return a? + b2, (2a + b)b

Function Fib(n)
Input: n - integer, n > 1
Output: F,
(1) (a,b) « FastFib(n)
(2) return a

Let us argue for the correctness of the program FastFib. We start with partial correctness.
Case 1: n = 1. In this case, the program returns (1,1) which is correct.

Case 2: n = 2. In this case, the program returns (1,2) which is also correct.

Case 3: n is even. From the given recurrences, we observe that computation of F), requires
Fln2)-1 and F,, /5. Similarly to compute Fj, 11, we need F), ;5 and F,,/9)11. The recursive call
to FastFib in line(4) has the argument (n/2) — 1, which is at least 1 since n > 2. So the
preconditions are satisfied for FastFib. Hence, FastFib in line (4) returns a = Flnj2)-1,b=
F, /2. Therefore, ¢ = F{;, /941 Using the provided recurrences, we can verify that the program
correctly returns F,, and F 1.

Case 3: n is odd. For computing F),, we need F(,,_1)/2 and F{;,1)/2 which are required for
computation of Fy, 41 as well. The argument to FastFib in line(8) has the argument (n—1)/2,
which is at least 1 since n > 2. So the preconditions are satisfied for FastFib. Hence, FastFib
in line (4) returns a = Fln—1)/2,b = F(n41)/2- Using the provided recurrences, we can verify
that the program correctly returns F,, and F, 1.

This completes the proof for partial correctness.

Termination of the FastFib program is evident from the fact that the recursive call to FastFib
is on an argument < n. Therefore, the program will eventually reach the case when n =1 or
n = 2 for which the program terminates.



Let T'(n) = number of additions and multiplications required for computation of F,, using
FastFib. We argue that T'(n) = O(logn). If we draw out a recursion tree, we would observe
that each level of the tree has a constant contribution to the total cost. This is because
for computation of F;,, we only perform constant number of addition and multiplication
operations, other than those performed in the recursive calls. Since there is only one recursive
call at each level, it suffices to prove that the height of recursion tree is O(logn). At level [,
the recursive call is on a value less than n/2! and the recursion stops when this value is 2 or
less. From this inequality, we can conclude that [ = O(logn), and thus that T'(n) = O(logn).

Problem 5

For each function f given in the left column, we need to choose one expression on the right such
that f = O(g), the constraint being that each expression on right can only be used once.

(a) 3.2"is O(2").

(b) As n becomes very large, the terms 2n* and n® dominate the rest of the terms. Hence,
2nt +1 2nt +1
n* + n* + — O(n).

(c) (n®+7)(n® —7) =n'Y — 49, which is O(n'?).

(d) As n becomes very large, the terms n* and n? dominate the numerator and denominator

4_ 1 4 4 _nl
respectively. Hence, % ~ % = n?. This implies that aniZign = 0(n?).
nlogn nlogn
e ~ logn, so = O(logn).
() ——% g —F (logn)

(f) Since 23 = 8 < 10, therefore 23" < 10". Hence, 237! = O(10™).

=

(2)

(2

n
i < Hn = n". Hence, Hz =0O(n").
1 =1 ;

(h) For n > 2, (n — 2)log(n3 + 4) < nlog(n*) = 4nlogn. Therefore, this function is O(nlogn).

Extra Credit

Part 1

We have seen in the solution to problem 2 that this version of the algorithm fails on input (1, 2).
We show that it actually fails on all inputs (a,b) such that a # b. That is, the algorithm works
only on inputs (a,b) where a = b.

If a = b, the algorithm returns a right away, and that is the correct answer because a divides
both a and b, and no integer greater than a is a divisor of a.

Now we show that if a # b, the algorithm fails. There are two cases to consider.

Case 1: a < b. On the initial input (a, b), the algorithm comes to line 2, and the first recursive
call is with input (a’,0’) = (b— a,b). Note that b’ > a/, so the recursive call also gets to line 2, and



makes a call with input (b’ —a/,0') = (b— (b—a),b) = (a,b). Now we see that the algorithm makes
an infinite chain of recursive calls and never terminates. In particular, the calls alternate between
inputs (a,b) and (b — a,b).

Case 2: a > b. We can use the same argument as for case 1, except the recursive calls now
alternate between inputs (a,b) and (a,a — b).

Part 2

The algorithm works on all inputs (a,b) such that a # b. To see this, recall the recursive version
of the simple algorithm for computing greatest common divisors from Lecture 10. We rewrite this
algorithm so that it looks more similar to the algorithm GCDb we are interested in.

Function GCD(a,b)

(1) if a = b then return a
2 ifa>bthena«<—a—0»
(3) elseb—b—a
(4) return GCD(a,b)

This looks almost like GCDb. The only difference is that GCD checks for equality of a and b right
away, so it does not miss the opportunity to return a when a = b. On the other hand, if a # b then
the first if in GCD has no effect. In GCDb, after the first if statement executes, there will be either
another recursive call to GCDb, or the algorithm will return right away, which is the same behavior
as GCD (except that GCD makes a recursive call where the two arguments are the same before it
returns, but that doesn’t change the fact that the two algorithms give the same result).

Recall that the algorithm failed on input (1,1). In fact, it fails on any input (a,b) with a = b.
To see this, consider the call GCDb(a, b). Since a = b, the first condition is false, so line 2 executes,
and we now have b = 0. Since a # 0, the algorithm makes a recursive call on line 4 with input
(@', V) = (a,0). Now a’ > b/, but ' = 0, so a’ doesn’t actually change on line 1 in the recursive call.
Since o’ # ¥/, the next recursive call is with input (a,0) again. We see that the algorithm makes
an infinite chain of recursive calls with this input, and thus never terminates.

Part 3

This algorithm is correct, so it works on all inputs (a,b) where a and b are positive integers.

Part 4

The algorithm works correctly if a = b.

Observe that on input (a,b) with a > b, GCDd makes a recursive call with input (b, ab), and
ged(b, ab) = b for any positive integers a, b. On input (b, ab), GCDd makes a — 1 recursive calls to
itself, with inputs (b, (a — 1)b), (b, (a — 2)b), ..., (b,b), and the last recursive call with input (b, b)
returns b. But ged(a,b) = b only if b divides a, so GCDd behaves correctly on inputs (a,b) with
a > b only if b divides a.

Finally, suppose a < b. Then we can write b = aq + r where ¢ € N and 0 <r < a. If r =0, the
algorithm makes ¢ — 1 recursive calls from line 2. The last recursive call is with input (a, a), which



returns a. This is correct because in this case a divides b, and no integer greater than a divides
a. If r > 0, the algorithm makes ¢ recursive calls from line 2. The last recursive call is with input
(a,r) where a > r. We showed earlier that the algorithm behaves correctly in this case only if r
divides a.

Thus, GCDd works on inputs (a,b) such that one input divides the other, or such that the
remainder of b after dividing by a is a divisor of a. The algorithm fails on all other inputs.
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