
CS/Math 240: Intro to Discrete Math 2/17/2011

Solutions to Homework 3

Instructor: Dieter van Melkebeek

Problem 1

We use induction to prove that (∀n ≥ 0)P (n), where P (n) denotes

n
∑

i=0

i3 =

(

n(n + 1)

2

)2

. (1)

For the base case we have n = 0, so the left-hand side of (1) is
∑0

i=0 i3 = 03 = 0, and the
right-hand side is (0(0 − 1)/2)2 = 0. Thus, P (0) holds.

Now suppose P (n) holds for n ≥ 0. We want to show that P (n + 1) holds, i.e., that

n+1
∑

i=0

i3 =

(

(n + 1)(n + 2)

2

)2

. (2)

We start with the left-hand side (LHS) of (2),
∑n+1

i=0 i3, and split the sum into
∑n

i=0 i3 and (n+1)3.
The former equals (n(n + 1)/2)2 by the induction hypothesis, so we have

n+1
∑

i=0

i3 =
(

03 + 13 + · · · + n3
)

+ (n + 1)3

=

(

n
∑

i=0

i3

)

+ (n + 1)3

=

(

n(n + 1)

2

)2

+ (n + 1)3

= (n + 1)2 ·

(

(n

2

)2
+ (n + 1)

)

= (n + 1)2 ·
n2 + 4n + 4

4

=
(n + 1)2 · (n + 2)2

4

=

(

(n + 1)(n + 2)

4

)2

This completes the induction step of the proof, and the proof by induction that (1) holds for all
nonnegative integers n.
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Problem 2

Let P (n) denote the proposition that for all finite sets A1, A2, . . . , An,

| ∪n
i=1 Ai| =

∑

φ 6=I⊆[n]

(−1)|I|−1| ∩i∈I Ai|. (3)

We will use induction on n to prove that P (n) holds true for all integers n ≥ 1.
For the base case, n = 1, the left-hand side (LHS) of P (1) evaluates to |A1|. The right-hand

side (RHS) of P (1) is a sum over all the nonempty subsets of [1]. The only nonempty subset of [1]
is 1. Therefore, the RHS evaluates to (−1)1−1|A1| = |A1|, which is same as the LHS. Hence, the
base case holds.

For the inductive step, we need to argue that P (n) ⇒ P (n + 1) where n ≥ 1. So, let’s assume
that P (n) holds. Consider the LHS of P (n + 1) –

| ∪n+1
i=1 Ai| = |(∪n

i=1Ai) ∪ An+1| (4)

= |(∪n
i=1Ai)| + |An+1| − |(∪n

i=1Ai) ∩ An+1|

Note that we made use of the result proved in problem 1(a) of homework 2 to rewrite (4). Now,

|(∪n
i=1Ai)| (5)

can be rewritten using the induction hypothesis. But, |(∪n
i=1Ai)∩An+1| cannot – at least not right

away – as it includes “∩An+1” which doesn’t match the induction hypothesis. However, we can
rewrite (5) using one of the identities from class, namely that for all sets X, Y , and Z,

(X ∪ Y ) ∩ Z = (X ∩ Z) ∪ (Y ∩ Z). (6)

More precisely, we can show by induction that (∀n ≥ 1)Q(n), where Q(n) denotes the predicate
that for all sets A and A1, A2, . . . An,

(∪n
i=1Ai) ∩ A = ∪n

i=1(Ai ∩ A).

For the base case, n = 1. The LHS and the RHS of Q(1) both evaluate to A1 ∩ A. Hence, the
base case holds.

For the inductive step, we need to argue that Q(n) ⇒ Q(n+1) where n ≥ 1. So, let’s assume that
Q(n) holds. Consider the LHS of Q(n + 1). Applying the identity (6) from class with X = ∪n

i=1Ai,
Y = An+1, and Z = A, we have that

(∪n+1
i=1 Ai) ∩ A = ((∪n

i=1Ai) ∪ An+1) ∩ A (7)

= ((∪n
i=1Ai) ∩ A) ∪ (An+1 ∩ A)

= (∪n
i=1(Ai ∩ A)) ∪ (An+1 ∪ A)

= ∪n+1
i=1 (Ai ∩ A). (8)

This finishes the proof that Q(n) holds for all positive integers n.
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We now continue with the proof of the induction step P (n) ⇒ P (n + 1) for n ≥ 1. Applying
our inductive hypothesis to both ∪n

i=1Ai and to ∪n
i=1(Ai ∩An+1) and plugging those equations into

(4) we obtain

| ∪n+1
i=1 Ai| = |(∪n

i=1Ai)| + |An+1| + |(∪n
i=1(Ai ∩ An+1)|

=
∑

φ 6=I⊆[n]

(−1)|I|−1|(∩i∈IAi| (9)

+ |An+1|

−
∑

φ 6=I⊆[n]

(−1)|I|−1|(∩i∈I(Ai ∩ An+1)|

Now we will combine all the three terms together. Note that we would like the final expression to
be a summation over all the non-empty subsets of [n + 1]. Any subset of [n + 1] either has n + 1
or not.

• If n + 1 is not present in a subset, then that subset can be seen as a subset of [n]. The first
term represents the sum over all the non-empty subsets of [n + 1] that do not contain n + 1.

• If n + 1 is present in a subset, then that subset can be viewed as a subset of [n] with an
additional element in form of n + 1. The second and third term together account for all such
subsets.

Rewriting (9), we get

| ∪n+1
i=1 Ai| =

∑

φ 6=I⊆[n+1],n+16∈I

(−1)|I|−1| ∩i∈I Ai)| (10)

+ |An+1|

+
∑

φ 6=I⊆[n],J=I∪{n+1}

(−1)|J |−1|(∩i∈JAi|

=
∑

φ 6=I⊆[n+1],n+16∈I

(−1)|I|−1| ∩i∈I Ai|

+
∑

I⊆[n],J=I∪{n+1}

(−1)|J |−1| ∩i∈J Ai|

=
∑

φ 6=I⊆[n+1]

(−1)|I|−1| ∩i∈I Ai|.

This proves that P (n) ⇒ P (n + 1) for every n ≥ 1. Since P (1) also holds, this proves that P (n)
holds for every integer n ≥ 1.

Problem 3

The flaw in this proof occurs at the inductive step for P (1), i.e., in the proof that P (0) ⇒ P (1).
Let’s analyze that step. By the induction hypothesis, ak = 1 for all k ∈ N such that k ≤ 0. This
only says that a0 = 1 for every nonzero a. But then the inductive argument reads

a1 =
a0 ∗ a0

a−1
,
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where -1 is not a number for which the induction hypothesis applies. Our result is in fact 1∗1
1

a

= a 6= 1

for a 6= 1. So our proof fails.

Problem 4

We define two sequences, (an)n∈N and (bn)n∈N. The terms an and bn represent the numbers of
A-lings and B-lings in the i-th generation, respectively. We have a0 = 200 and b0 = 800. Our
goal is to show that the population of A-lings in any generation is at most twice the population of
B-lings.

Let’s try to write a proof by induction right away. Define the predicate P (n): an ≤ 2bn,
which says that “the number of A-lings in generation n is at most twice the number of B-lings in
generation n”.

The base case P (0) holds because a0 = 200 and b0 = 800. We see that 200 = a0 ≤ 2b0 = 1600.
Now assume that P (n) holds, that is, an ≤ 2bn. Our goal is to show that an+1 ≤ 2bn+1. To do

so, we need expressions for an+1 and bn+1 in terms of an and bn. Those depend on which population
is bigger in generation n, so we proceed by cases.

Case 1: bn ≤ an ≤ 2bn. In this case, there is an excess of A-lings. Every B-ling pairs up
with some A-ling, and each pair produces one A-ling and one B-ling for a total of bn A-lings
and bn B-lings. The remaining ab − bn A-lings form pairs and each pair produces 3 A-lings for a
total of 3⌊(an − bn)/2⌋ A-lings and no B-lings. Here we use the notation ⌊x⌋ to denote the real
number x rounded down to an integer. Thus, we have bn+1 = bn and an+1 = bn + 3⌊(an − bn)/2⌋.
But if an = 2bn (which can happen in this case) we have an+1 = bn + 3⌊bn/2⌋, which is roughly
5
2bn = 5

2bn+1, so we have too many A-lings. We failed to prove the implication P (n) ⇒ P (n + 1)
in this case. In fact, one can show that if am ≥ bm + 2 for some m, then the population of A-lings
will grow uncontrollably. Intuitively, this makes sense because every pair of A-lings produces three
A-lings and pairing A-lings with B-lings doesn’t grow the B-ling population.

It looks like we are stuck in our proof attempt because an ≤ 2bn doesn’t always imply an+1 ≤
2bn+1. But, just like in the tiling problem from class, we can get the induction scheme to work by
strenthening the statement.

Recall that the initial populations are a0 = 200 and b0 = 800, so the initial populations do
not fall in Case 1. Let’s look what happens in the case when an ≤ bn. Then there is an excess of
B-lings. Every A-ling pairs up with some B-ling, and each such pair produces one A-ling and one
B-ling for a total of an A-lings and an B-lings. The remaining bn − an B-lings form pairs and each
pair produces one A-ling and two B-lings for a total of ⌊(bn − an)/2⌋ A-lings and 2⌊(bn − an)/2⌋
B-lings. Thus, we have an+1 = an + ⌊(bn − an)/2⌋ and bn+1 = bn + 2⌊(bn − an)/2⌋. Now an ≤ bn

and ⌊(bn − an)/2⌋ ≤ 2⌊(bn − an)/2⌋, which implies that an+1 ≤ bn+1. Hence, we have shown that
(∀n ≥ 0)Q(n) ⇒ Q(n + 1), where Q(n) denotes the statement that an ≤ bn. Since Q(0) also holds,
we have shown by induction that (∀n ≥ 0)Q(n) holds. That is, we proved the following proposition.

Proposition 1. Starting from a population of 200 A-lings and 800 B-lings, the A-lings will never

outnumber the B-lings.

In symbols this means that (∀n) an ≤ bn when the initial populations are a0 = 200 and
b0 = 800. It follows that with such starting populations, (∀n) an ≤ 2bn, which is what we wanted
to show.
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Let’s also give some intuitive reasoning behind Proposition 1. Pairing an A-ling and a B-ling
doesn’t change the sizes of the two populations. Also note that every pair of B-lings produces
two B-lings, so the population of B-lings doesn’t change. A new A-ling is born for each pair of
B-lings that got paired together due to the lack of A-lings. Thus, the difference between the two
populations is halved. As the A-ling population increases, more and more B-lings get paired with
A-lings, which slows down the growth of the A-ling population. When the two populations become
the same size, no more changes in the populations occur because all B-lings are paired with A-lings
and vice versa.

Problem 5

Part a

We will start by examining small values of n. When n = 1, the first player obviously loses since
he/she must take the remaining stick. For n = 2, 3, 4, however, the first player can choose exactly
enough sticks so that there is one remaining for the second player; in other words, the first player
has a winning strategy. From this, and looking at possible strategies for n = 5, we make the
following conjecture P (n): If n is of the form 4k + 1 for some integer k, then the second player has
a winning strategy; othewise the first player has a winning strategy.

We show that (∀n ≥ 1)P (n) holds by strong induction.
Our base case is P (1). As we argued above, then the first player has a winning strategy, which

is consistent with the fact that 1 can be written as 1 = 4 · 0 + 1.
For the strong induction step, we assume that P (m) holds for all integers m in the range

1 ≤ m ≤ n, and we want to argue that P (n + 1) holds. Let us call the first player for the game
with n + 1 sticks Alice, and the second player Bob. We consider four cases.

1. Case n + 1 is of the form 4k. If Alice picks 3 sticks, Bob then sees 4(k1) + 1 sticks, so Alice
has a winning strategy, consistent with our conjecture P (n + 1).

2. Case n + 1 is of the form 4k + 1. Since n ≥ 1, we know that n + 1 ≥ 5. Alice can then
chose to remove 1, 2 , or 3 sticks. If she removes one stick, the remaining number of sticks
is n = 4k. By the strong induction hypothesis, the player who plays first at this point has
a winning strategy. That player is Bob, so Bob has a winning strategy. Similarly, if Alice
removes two sticks, the remaining number is 4(k1) + 3. Again, Bob has a winning strategy,
by the same reasoning. Similarly, if Alice removes 3 sticks, Bob has a winning strategy. So,
however Alice moves, Bob has a winning strategy for the subsequent rounds. So, Bob has a
winning strategy. This proves our conjecture P (n + 1) in this case.

3. Case n + 1 is of the form n + 1 = 4k + 2. If Alice removes 1 stick, Bob is left with 4k + 1, so
Alice has a winning strategy, consistent with our conjecture P (n + 1).

4. Case n + 1 is of the form 4k + 3. If Alice picks 2 sticks, Bob is left with 4k + 1 sticks, so Alice
has a winning strategy, consistent with P (n + 1).

So in any case, P (n + 1) holds, so by strong induction we concluce that P (n) holds for all integers
n ≥ 1.
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Part b

We first note that the concept of a winning strategy for a two-player game can be expressed
succinctly using a logical expression. Breaking our winning strategy into a series of moves for both
players, we note that while the player employing the strategy has complete freedom to choose his
or her own moves, that player must be able to select these moves in such a way that it defeats all
possible counter-moves by the opposing player. So for the first player to have a winning strategy,
for example, there must exist a first move that player can take, such that for all second moves by
the opponent, the first player can still win. So there exists a third move the first player can take
that follows in the same fashion until the game ends, in a finite number of steps, with a victory for
the first player. More formally, this can be expressed as follows:

(∃x1)(∀x2)(∃x3) . . . (Qxn)The sequence of moves (x1, x2, ...xn) leads to a win for player one,

where Q =

{

∃ if n is odd
∀ otherwise

We note that if we take the negation of this statement, we can push that negation past our
quantifiers [Recall: ¬∃x(P (x)) = ∀x(¬P (x))] to get the following statement:

(∀x1)(∃x2)(∀x3) . . . (Qxn)The sequence of moves (x1, x2, ...xn) does not lead to a win for player one,

where Q =

{

∀ if n is odd
∃ otherwise

Where (assuming no ties) the above translates into a winning strategy for the second player.
For the second player to win, for any initial move the first player takes, there must exist a second
counter-move by the second player that is a part of a winning strategy; that is, for any third move
by the first player...etc. Clearly either the first statement or its negation must be true in any
situation; so we can conclude that for our two-player game, there is either a winning strategy for
the first player, or a winning strategy for the second.

We can formalize the above argument as a proof by induction on the number of steps n: For
every integer n ≥ 0, in a n-step game between two people there exists a winning strategy for either
the first player or for the second. P (0) correspond to the no-step game; allowing no ties, the game
is an automatic win for one of the two players. So for that player, the ’winning strategy’ is to do
nothing.

Now, assuming that P (n) holds [that is, for all n-step games between two people, there is a
winning strategy for one player], we must show that P (n + 1) holds as well. To do this, we will
break our (n + 1) step game into two separate parts:

• The first player selects a move.

• The two players begin an n-step game whose starting position is the result of the previous
move, with the second player taking first action in this ’sub-game.’

From P (n), the second stage of our (n + 1) step game has a winning strategy for one player.
Examining the first stage of the game, we see there are two possible situations for the first player.
This player can either select a move x1 in such a way that the second stage of the game has a
winning strategy for him/her, or he cannot. In the first case, we have shown that the first player
has a winning strategy for the (n + 1) step game; namely {choose x1, follow the winning strategy
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for n-step game}. In the second case, we see that the second player has a winning strategy for
our (n + 1) step game, which is {do nothing; follow the winning strategy for n-step game}. So
given that P (n) holds, P (n + 1) must hold. Combined with our base case, this proves the original
statement.

Extra Credit Problem

Consider the case when there is only a single Venusian, Alice, with a mark on her forehead. Since
she cannot observe any other Venusian with a mark, she would realize that she has a mark as soon
as the Earthling proclaims that there is someone with a mark on the forehead. Therefore, Alice
will die the morning of the second day.

Now, consider the case when there are two Venusians, Alice and Bob, with marks on their
foreheads. Both of them can observe the other person’s mark. So, when the Earthling makes his
statement, it is consistent with Alice’s knowledge that Bob is the only person with a mark on the
forehead and that Alice herself does not have a mark on the forehead. So, Alice does not die the
morning of the second day. By the same token, neither does Bob. However, when at the gathering
the second day Alice notices that Bob is still alive, she realizes that she herself must also have a
mark on her forehead: “Since Bob is still alive, Bob could observe a mark on someone’s forehead
yesterday. But since that mark is not visible to me, there must be a mark on my forehead.” Hence,
Alice dies the next morning, i.e., the morning of the third day. The same logic leads to Bob’s death
that morning.

This leads to the conjecture that if there are n Venusians with a mark on their forehead, then
they all die on morning of the (n + 1)st day, i.e., the nth day after the Earthling’s visit. Let us
denote this statement by P (n). We argue that P (n) holds for all integers n ≥ 1 by induction. We
already argued the base case n = 1.

For the induction step, assume P (n) holds for some n ≥ 1. We need to show that P (n+1) holds.
Now consider the point of view of a person with a mark. Lets call her Alice. Alice can observe n
Venusians with marks. She would reason that since P (n) holds (by the induction hypothesis), if
these n Venusians are the only ones with marks on their foreheads, they should die on the morning
of the (n+1)st day. So, Alice cannot conclude that she has a mark on her forehead during the first
n days, so she won’t die during the first n + 1 days. But since every one else with a mark would
reason the same, no one would die during the first n + 1 days. At the meeting on the (n + 1)st day,
Alice would reason that since all the n Venusians with marks are alive, these Venusians can also
observe n other Venusians with marks on their foreheads. Then, Alice would realize that there are
n + 1 Venusians with marks, and that she also has a mark on her forehead. This would lead to the
death of Alice the morning of the (n + 2)nd day. The same holds for the n other Venusians with a
mark on their forehead. So, P (n + 1) holds. This finishes the induction step of the proof, and the
proof itself.
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