
CS/Math 240: Intro to Discrete Math 3/3/2011

Solutions to Homework 4

Instructor: Dieter van Melkebeek

Problem 1

We denote by Zeros(S) the number of 0’s that appear in sequence S. Similarly, Ones(S) denotes
the number of 1’s in S.

(a) We use strong structural induction to prove the given statement. The induction is on the
number of times the constructor rule is used for creating a sequence. We define P (n): “In
every good sequence that can be created using n applications of the constructor rule, the
number of 0’s and 1’s is equal.”

Proof. For the base case, we consider the sequence obtained without any application of the
constructor rule. There is only one such good sequence, S, obtained using the foundation rule.
This is the empty sequence which has no 0’s and 1’s. Hence, Zeros(S) = Ones(S), which proves
the base case.

Next we assume that P (m) holds for all natural numbers m ≤ n. We show that P (n+1) holds.
Consider a good sequence S created using n+1 applications of the constructor rule. There are
two cases that we need to analyze depending on the first character of the sequence.

Case 1 : The first character of S is 0. This means that S is of the type 0s1t. Since S was
created using n + 1 applications of the constructor rule, both s and t, were created by at most
n applications of the constructor rule. Therefore, by our induction hypothesis,

Zeros(s) = Ones(s) (1)

Zeros(t) = Ones(t). (2)

By construction of S, we have that:

Zeros(S) = 1 + Zeros(s) + Zeros(t) (3)

Ones(S) = 1 + Ones(s) + Ones(t). (4)

Substituting (1) and (2) into (3), we get

Zeros(S) = 1 + Ones(s) + Ones(t) (5)

= Ones(S). (6)

Case 2 : The first character of S is 1. This means that S is of the type 1s0t. This case can be
proved using reasoning similar to as above, swapping the roles of 0 and 1. We omit the details.

This completes the inductive step. Hence, P (n) holds true for all integers n ≥ 0.
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(b) We again make use of structural induction to prove the given statement. This time the induction
is on the number of 0’s (equivalently, the number of 1’s) in the sequence. Let’s define P (n):
“Every sequence with n 0’s and n 1’s is a good sequence.”

Proof. The base base is n = 0. In that case the sequence does not contain any 0’s or 1’s,
meaning it is the empty sequence, which is good by the foundation rule. Hence, the base case
holds.

For the induction step, we prove that for every integer n ≥ 0, (
∧n

k=0 P (k))⇒ P (n + 1). Let S
be sequence of 0’s and 1’s such that Zeros(S) = Ones(S) = n + 1. As in (a), we have two cases
that we need to analyze depending on the first character of S.

Case 1 : Assume that the first character of S is 0. Consider a plot of the number of 0’s minus
the number of 1’s as we move over S from left to right. For S = 00101101110001 this gives us
the plot in Figure 1.
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Figure 1: An example for the sequence S = 00101101110001.

The plot starts at 0, and, since S starts with a 0, next goes up to 1. Since S contains an equal
number of 0’s and 1’s, the plot has to end at 0. Thus, there is a first time after the start that
the plot returns to zero. Let k denote the number of 0’s seen up to then. At that point, the
plot has to go down from 1 to 0 due to a character 1. This is because in each step the plot
can only go up or down by 1, and has to remain positive until the first time we hit 0 after the
start. Let us denote by s the subsequence of S after the initial 0 and before the 1 that brings
the plot back to 0 for the first time. Let us denote by t the subsequence of S after that 1. We
can write S as S = 0s1t.

We have the following equalities:

Zeros(s) = Ones(s) = k − 1 (7)

Zeros(S) = 1 + Zeros(s) + Zeros(t) (8)

Ones(S) = 1 + Ones(s) + Ones(t) (9)

Substituting (7) into (8) and (9), we get

Zeros(t) = Ones(t) = n + 1− k (10)
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Since 1 ≤ k ≤ n, we have that k− 1 ≤ n and n+1− k ≤ n. Therefore, by our strong induction
hypothesis, both s and t are good. Combining with the constructor rule, we conclude that S
is good.

Case 2 : We would assume that the first character of S is a 1. We can argue as in Case 1—we
only need to interchange 0 and 1. We omit the proof for this case.

This completes the inductive step. Hence, P (n) holds true for all integers n ≥ 0.

Problem 2

(a) We begin by defining any puzzle state by its sequence of tiles in-order, starting from the top
left corner and proceeding in a left-right, top-down fashion. So our initial board state is

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 14,�),

and our desired end state is

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,�),

where � denotes the empty tile. Recall that with our 8-puzzle example from class, any
column moves resulted in the rearrangement of the relative order of three numbered tiles and
the empty tile, so that the consecutive series �abc was transformed into cab�, or vice versa:

�abc↔ cab�.

It can be seen similiarly that a column move of the 16-puzzle will rearrange the relative order
of four numbered tiles and the empty tile:

�abcd↔ dabc�.

Such a move changes the relative order of exactly three pairs of numbered tiles, namely
{a, d}, {b, d}, and {c, d}. Each of these changes either decreases or increases the total num-
ber of pairwise errors in the overall sequence by one. For example, if our move was from
(....�, 5, 7, 1, 4, ....) to (...., 4, 5, 7, 1,�, .....), the total number of pairwise errors in the sequence
would decrease by 1 [ (5, 4) → (4, 5) removes an error, (7, 4) → (4, 7) also removes an error,
and (1, 4)→ (4, 1) adds an error ]. In general, the total change from a single column move is
describable as ∆errors = x + y + z, where x, y, z,∈ {−1, 1}. Since ∆errors is the sum of three
odd integers, this sum is necessarily an odd integer as well. So every column move changes
the total number of pairs in error by an odd number [More specifically, by one of -3, -1, 1, or
3—but it is not necessary to be this specific].

We now make the following statement: for all k ≥ 0, after 2k column moves there is an odd
number of errors in our 16-puzzle. We refer to the latter statement as P (k). The base case
P (0) holds as out start state contains exactly one pair in error. Assuming P (k) holds for
some natural number k, we show that P (k + 1) holds.

From the above argument, the change in the number of pairs in error after any single column
move is odd, i.e., expressible as 2n+1 for some integer n. The total change in error after two
column moves is then (2m + 1) + (2n + 1) = 2(m + n + 1) for two integers m and n. This

3



change is necessarily even. The sum of an even and odd number is necessarily odd, so if P (k)
holds, P (k + 1) must as well.

We have now shown that there can be no solution for the 16-puzzle that uses an even number
of column moves. This is equivalent to showing that all solutions for the 16-puzzle must use
an odd number of column moves.

(b) We begin by defining any puzzle state by R, the number of rows that the empty square is
away from the fourth row. Initially, R = 0. We note that any column move changes the row
position of the empty square by 1 or -1. So after any two column moves, there is a total
change in R of 2, 0, or -2. We make the following statement: for all k ≥ 0, after 2k +1 moves
R is odd. We denote the latter statement by Q(k).

Our base case Q(0) corresponds to the puzzle state after one column move; in this case R = 1,
which is odd. Assuming Q(k) holds for some natural number k [Rk = 2n+1 for some integer
n], we see that Rk+1 is one of either 2n + 3, 2n + 1, or 2n − 1. All of these are odd integers.
Thus, Q(k + 1) holds.

Since at the end of the puzzle R = 0, which is even, we have shown that there can be no
solution for the 16-puzzle that uses an odd number of column moves. This is equivalent to
showing that all solutions for the 16-puzzle must use an even number of column moves.

(c) Since any any solution requires both an odd number of column moves and an even number of
column moves, no solution can exist.

Problem 3

(a) Let P (k) be the proposition: The kth time we reach the test of the while loop, 0 ≤ i ≤ n and
x does not appear in A[0..(i− 1)]. We need to prove that the proposition holds for all positive
integer values of k.

Proof. Let’s denote by ik, the value of variable i the kth time we reach the test of the while
loop. We prove that 0 ≤ ik ≤ n and x does not appear in A[0..(ik − 1)]. We use induction on
k.

The base case is P (1). The only program statement to have executed so far is line 1 which sets
i to 0, i.e., i1 = 0. Moreover, n ≥ 0 by the input precondition. So 0 ≤ i1 ≤ n holds. As per the
stated convention, A[0..− 1] is the empty array. Since the empty array contains no element, x
does not appear in A[0..(i1 − 1)]. Hence the base case holds.

For the inductive step, assume that P (k) holds for some integer k ≥ 1. Assuming we reach the
test of the while loop for the (k + 1)st time, the loop condition evaluated to true the kth time
around, which leads us to conclude that

ik < n. (11)

Also, during the kth iteration of the loop, the return statement in line 3 was not executed.
Otherwise, we would not reach the test of the while loop for the (k + 1)st time. From this we
infer that the if statement evaluated to false, i.e.,

A[ik] 6= x. (12)
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During the kth iteration, line 4 has executed. Therefore,

ik+1 = ik + 1. (13)

Combining (11) and (13), we get that ik+1 ≤ n. As per the induction hypothesis, ik ≥ 0;
therefore ik+1 ≥ 0. Again, x does not appear in A[0..(ik − 1)]. Combining this with (12), we
get x does not appear in A[0..ik ] which is same as A[0..(ik+1 − 1)]. Hence, P (k + 1) holds true
as well.

Therefore, the loop invariant is maintained throughout.

(b) Partial Correctness: Assume that the program terminates. There are only two possible return
points for the program.

First, the return statement in line 3 got executed. The output in this case would be the value
of variable i. The execution of the return statement means that the if condition evaluated to
true i.e. A[i] = x. By our loop invariant A[0..(i − 1)] does not contain x, therefore i is the
smallest index, such that A[i] = x.

Second, the return statement in line 5 got executed. This means that the condition i < n
failed. Since 0 ≤ i ≤ n holds by our invariant, this means that i = n. The second part of our
loop invariant then states that A[0..(n− 1)] does not contain x. The program returns -1 in this
case, which is as per the specification.

Termination: In each complete iteration of the while loop the value of i is increased by one.
Since the loop ends as soon as i ≤ n, there can only be a finite number of iterations.

Problem 4

The given algorithm is known as Euclid’s algorithm for the greatest common divisor. We restate
the algorithm below for completeness.

Algorithm 1: GCD(a, b)

Input: a, b ∈ N, at least one of a, b is nonzero
Output: gcd(a, b)

(1) if a ≤ b then (x, y)← (a, b)
(2) else (x, y)← (b, a)
(3) while x > 0 do
(4) r← y − ⌊y/x⌋ · x
(5) y ← x
(6) x← r

(7) return y

Part a

Recall the following lemma from class.
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Lemma 1. Let x, y be positive integers. Then the following are true.

(i) If x = y, gcd(x, y) = x

(ii) If x < y, gcd(x, y) = gcd(x, y − x)

(iii) If x > y, gcd(x, y) = gcd(x− y, y)

We can extend part (ii) of this lemma to the following.

Lemma 2. Let x, y ∈ N such that 0 < x ≤ y, and let r = y−⌊y/x⌋ ·x. Then gcd(x, y) = gcd(x, r).

Proof. Just apply part (ii) of Lemma 1 ⌊y/x⌋ times.

Now we prove partial correctness of Euclid’s algorithm. To that end, we prove the following
loop invariant.

Theorem 1. Each time we reach the test of the while loop on line 3, 0 ≤ x ≤ y and gcd(x, y) =
gcd(a, b).

Proof. Let xk, yk, rk be the values of x, y and r the kth time we reach the test of the while loop.
We show by induction on k that 0 ≤ xk ≤ yk and gcd(xk, yk) = gcd(a, b).

For the base case k = 1, we need to find what x1 and y1 are. We do this by cases.
Case 1: a ≤ b. In this case, the condition on the first line is true, so we set x1 = a and y1 = b.

Then x1 ≤ y1. Hence, gcd(x1, y1) = gcd(a, b) by initialization. Since the specification says a and b
are non-negative, x1 ≥ 0 holds too.

Case 2: a > b. In this case, the condition on the first line is false, so we set x1 = b and y1 = a.
Then x1 < y1 and gcd(x1, y1) = gcd(b, a) = gcd(a, b) by initialization. Since the specification says
a and b are non-negative, x1 ≥ 0.

This completes the proof of the base case.

Now suppose that gcd(xk, yk) = gcd(a, b) and 0 ≤ xk ≤ yk, and suppose we reach the test of
the while loop for the (k + 1)st time. The latter implies that the kth interation of the while loop
completed, so xk > 0. In this case we have that rk = yk − ⌊

yk

xk

⌋ · xk. Since ⌊ yk

xk

⌋ ≤ yk

xk

< ⌊ yk

xk

⌋ + 1
and xk > 0, it follows that

⌊

yk

xk

⌋

· xk ≤
yk

xk

· xk = yk <

(⌊

yk

xk

⌋

+ 1

)

· xk =

⌊

yk

xk

⌋

· xk + xk.

Therefore, 0 ≤ rk = yk − ⌊
yk

xk

⌋ · xk < xk. Since xk+1 = rk we have that

0 ≤ xk+1 < xk, (14)

and since yk+1 = xk, that 0 ≤ xk+1 ≤ yk+1, which establishes the first part of the invariant.
As for the second part, we also have gcd(xk+1, yk+1) = gcd(rk, xk). By Lemma 2, the latter is
gcd(xk, yk), and the induction hypothesis tells us that gcd(xk, yk) = gcd(a, b). It follows that
gcd(xk+1, yk+1) = gcd(a, b).

Since Theorem 1 tells us that x ≥ 0, and the loop terminates only if x ≤ 0, we see that when
the loop terminates, x = 0. In that case gcd(x, y) = y because every number divides zero and y
is the largest divisor of y. By the invariant from Theorem 1, gcd(x, y) = gcd(a, b) at that point,
which gives us partial correctness of the algorithm.
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Now we show that the algorithm terminates. Consider the situation the kth time we reach the
test of the while loop. First, if xk ≤ 0, the loop terminates and the algorithm returns right after
that. When xk > 0, we observe that xk+1 < xk because of (14). Thus, x is a nonnegative integer
which decreases by at least one in each iteration of the loop unless it’s zero already. Since x is
initialized to be min(a, b), after at most min(a, b) iterations of the loop, x = 0, the loop terminates,
and the program returns.

This completes the proof that Euclid’s algorithm for the greatest common divisor is correct.

Here we also remark that Algorithm 1 is an improvement over the algorithm discussed in class
since it works in all cases in which gcd(a, b) is defined. Unlike the algorithm from lecture, this one
also works when one of the arguments is zero.

Part b

Now we show that the kth time we reach the test of the while loop, there exist integers (possibly
negative) wk, zk, uk, vk such that xk = wka + zkb and yk = uka + vkb. We prove this invariant by
inductionk on k.

For the base case, we have two cases.
Case 1: a ≤ b. Then x1 = a and y1 = b, so let w1 = v1 = 1, and z1 = u1 = 0.
Case 2: a > b. Then x1 = b and y1 = a, so let z1 = u1 = 1 and w1 = v1 = 0.
This completes the proof of the base case.
Now suppose that the kth time we reach the test of the while loop, there are integers wk, zk, uk, vk

such that xk = wka + zkb and yk = uka + vkb. If xk = 0, there is no next iteration of the
loop and thus nothing to prove. So assume that xk > 0. A careful examination of the proof of
Lemma 2 gives us the values of our four integers the (k + 1)st time we reach the test of the while
loop. Since xk+1 = rk = yk − ⌊

yk

xk

⌋xk, we can write xk+1 = (uka + vkb) − ⌊
yk

xk

⌋ · (wka + zkb) =
(uk−⌊

yk

xk
⌋wk)a+(vk−⌊

yk

xk
⌋zk)b, so we can pick wk+1 = uk−⌊

yk

xk
⌋wk and zk+1 = vk−⌊

yk

xk
⌋zk. Since

yk+1 = xk, we can write yk+1 = wka + zkb and pick uk+1 = wk and vk+1 = zk. All choices of the
coefficients are valid as they are all integers.

This completes the proof of the invariant.

Part c

Our proof of the inductive step in the proof from part (b) gives us the modification of the algorithm
we need, and we show it as Algorithm 2. This algorithm is known as the Extended Euclidean
algorithm.
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Algorithm 2: EXTENDED-GCD(a, b)

Input: a, b ∈ N, at least one of a, b is nonzero
Output: gcd(a, b) and integers u, v such that gcd(a, b) = au + bv

(1) if a ≤ b then (x, y,w, z, u, v) ← (a, b, 1, 0, 0, 1)
(2) else (x, y,w, z, u, v) ← (b, a, 0, 1, 1, 0)
(3) while x > 0 do
(4) q ← ⌊y/x⌋
(5) r← y − qx
(6) y ← x
(7) x← r
(8) wNew ← u− qw
(9) zNew ← v − qz

(10) u← w
(11) v ← z
(12) w← wNew
(13) z ← zNew

(14) return (y, u, v)

Problem 5

Fix two positive integers a and b. We prove the two implications separately.
First let’s show that if gcd(a, b) = 1, then there is some integer n0 such that for all n ≥ n0, we

can realize a postage of n cents using a-cent and b-cent stamps.
Since gcd(a, b) = 1, there exist x, y ∈ Z such that 1 = ax + by by part (b) of problem 4. This

suggests that if we can realize a postage of n cents, say n = ca + db for c, d ∈ N, then we can
realize n + 1 cents as n + 1 = ca + db + ax + by = (c + x)a + (d + y)b. However, x and/or y may
be negative, so we cannot guarantee that c + x ∈ N and d + y ∈ N. In fact, except when a and b
are at most 1, one of x or y has to be negative (and the other one positive). Assume without loss
of generality that y < 0. Then after some number of applications of our strategy, we start using
negative numbers of b-cent stamps, which is not valid. Thus, we need to be able to “restart” at
some point and increase the number of b-cent stamps we use. We can “restart” at a postage that
is a multiple of b. If n = kb, we can use k b-cent stamps to realize this postage. For the next
b− 1 postages, we need to apply our rule before we get to a postage that can be realized using only
b-cent stamps again. In those b− 1 applications of our rule, we reduce the number of b-cent stamps
from k to k + (b− 1)y. To be able to do this, we need k + (b− 1)y ≥ 0, so pick n0 to be the first k
for which this works.

We now argue the other implication. Suppose that gcd(a, b) 6= 1. In general, every value that
can be realized using stamps of a and b cents, has to be a multiple of gcd(a, b). To see this, note
that a = m · gcd(a, b) and b = n · gcd(a, b) for some m,n ∈ N. Hence, a postage formed with x
a-cent stamps and y b-cent stamps is xa+yb = xm ·gcd(a, b)+yn ·gcd(a, b) = (xm+yn) ·gcd(a, b).
Since gcd(a, b) 6= 1, this means that there are infinitely many values that cannot be realized, e.g.,
all values of the form k · gcd(a, b) + 1, where k ∈ N. Thus, no matter how large we pick n0, there
is always a value n ≥ n0 that cannot be realized.
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