
CS/Math 240: Intro to Discrete Math 4/7/2011

Solutions to Homework 7

Instructor: Dieter van Melkebeek

Problem 1

We prove two implications to prove the equivalence

f is injective ⇐⇒ (∀X, Y ⊆ A) f(X) ∩ f(Y ) = f(X ∩ Y ).

First assume that f is injective, and pick any b ∈ B. Since f is injective, the inverse of f is
a function, which means that for every b ∈ f(A) there is a unique a ∈ A such that f(a) = b.
Furthermore, if b ∈ f(S) for any S ⊆ A, this means a ∈ S. With this observation in hand, we have
the following chain of equivalences that shows f(X) ∩ f(Y ) = f(X ∩ Y ).

b ∈ f(X) ∧ b ∈ f(Y ) ⇐⇒ a ∈ X ∧ a ∈ Y

⇐⇒ a ∈ X ∩ Y

⇐⇒ b ∈ f(X ∩ Y )

Now assume that for any two subsets X, Y ⊆ A we have f(X) ∩ f(Y ) = f(X ∩ Y ). Suppose
f(a1) = f(a2) = b. Our goal is to show that a1 = a2. Observe that f({a1}) = f({a2}) = {b}. But
our assumption, f({a1}) ∩ f({a2}) = f({a1} ∩ {a2}) = {b} ∩ {b} = {b}, so {b} = f({a1} ∩ {a2}).
If a1 6= a2, {a1} ∩ {a2} would be empty, and f(∅) = ∅ 6= {b}. Hence, we have a1 = a2, so f is
injective.

Problem 2

Table 1 summarizes all the results for this problem. We give equivalence classes and argue whether
a relation is a total order later.

Relation Equivalence relation? Order relation?

R1 no no
R2 no yes
R3 no no
R4 yes yes
R5 yes no

Table 1: A summary of answers for this question.

Recall the following definitions. In the list below, R is a relation on a set A. For this problem,
A is the power set of D.

• R is reflexive if (∀a ∈ A) aRa.

• R is symmetric if (∀a, b ∈ A) aRb ⇐⇒ bRa.
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• R is antisymmetric if (∀a, b ∈ A) (aRb ∧ bRa) ⇒ (a = b).

• R is transitive if (∀a, b, c ∈ A) (aRb ∧ bRc) ⇒ aRc.

• R is an equivalence relation if it is reflexive, symmetric, and transitive.

• R is an order relation if it is antisymmetric and transitive.

Now that we have reviewed the terminology, let’s start analyzing our five relations. Below, we
use X, Y , and Z for sets (they will be subsets of D). Since |D| ≥ 2, there are at least two different
elements in D, and we call them a and b.

Let’s start with R1 = {(X, Y ) | X ∩ Y = ∅}.
This is a symmetric relation because X ∩ Y = Y ∩ X, so X ∩ Y = ∅ ⇐⇒ Y ∩ X = ∅. Since

X ∩ X = ∅ and X 6= X, R1 is not antisymmetric, and therefore R1 is not an order relation.
Consider the sets X = Z = {a} and Y = {b}. Then (X, Y ) ∈ R1 and (Y, Z) ∈ R1 because

X ∩ Y = ∅ and Y ∩ Z = ∅. However, X = Z, so X ∩ Z = X 6= ∅, which means (X, Z) /∈ R1, and
R1 is not transitive. Therefore, R1 is not an equivalence relation.

Now consider R2 = {(X, Y ) | X ∪ Y = ∅}.
This is a symmetric relation because X ∪ Y = Y ∪ X, so X ∪ Y = ∅ ⇐⇒ Y ∪ X = ∅. Also

observe that if X ∪ Y = ∅ and Y ∪ X = ∅, then, in fact, both X and Y are the empty set, so
X = Y . Hence, R2 is also antisymmetric. This relation is an example of a relation that is both
symmetric and antisymmetric.

For any nonempty subset X ⊆ D, we have X ∪ X = X 6= ∅. Thus, R2 is not reflexive, and,
therefore, not an equivalence relation.

Finally, R2 is transitive. If X ∪ Y = ∅ and Y ∪ Z = ∅, an earlier argument implies X = Y =
Z = ∅, so X ∪ Z = ∅.

Since R2 is antisymmetric and transitive, it is an order relation. However, it is not a total
order. For example, consider the sets X = {a} and Y = ∅. Then we have neither X ∪ Y = ∅ nor
Y ∪ X = ∅.

Let’s focus on R3 = {(X, Y ) | |X| ≤ |Y |} next. We show that this relation is neither symmetric
nor antisymmetric, thus showing that it’s neither an order relation nor an equivalence relation.

Consider the sets X = {a}, Y = {b}, and Z = {a, b}. Then (X, Y ) ∈ R3 and (Y, X) ∈ R3,
but X 6= Y , so R3 is not antisymmetric. Also note (X, Z) ∈ R3 but (Z, X) /∈ R3, so R3 is not
symmetric either.

Next up is R4 = {(X, Y ) | X ∩ Y = X ∪ Y }.
We find an alternative statement for R4. Let X and Y be any subsets of D. Note that X ⊆ X∪Y

and X ∩ Y ⊆ Y . Thus, if X ∪ Y = X ∩ Y , we get X ⊆ Y . By switching the roles of X and Y , we
also get Y ⊆ X and X = Y . Conversely, if X = Y , then certainly X ∩ Y = X ∪ Y because both
the intersection and the union is just X. Hence, we can rewrite R4 = {(X, Y ) | X = Y }.

Equality is easily seen to be reflexive, symmetric, and transitive, so R4 is an equivalence relation.
Every set is equal to itself, so R4 is reflexive. If X is the same as Y , then also Y is the same as
X, so R4 is symmetric. Finally, if X is the same as Y and Y is the same as Z, then also X is the
same as Z, so R4 is transitive.

Every subset of D is in its own equivalence class.
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Equality is also antisymmetric. If X = Y and Y = X, then X = Y follows because it’s part of
the assumption. Thus, equality is also an order relation.

Equality is not a total order. For example, pick X = {a} and Y = ∅. Then we have neither
X = Y nor Y = X.

Finally, let’s consider R5 = {(X, Y ) | there is a total function f : X → Y that is a bijection.}
Let X ⊆ D. Then the identity map f : X → X defined by f(a) = a is a bijection because for

any a ∈ X, only a maps to a, so f is injective, and a is the image of a under f , so f is surjective.
The identity map is also total. So, R5 is reflexive.

Now suppose X, Y ⊆ D such that (X, Y ) ∈ R5. Let f be a total function from X to Y that
is a bijection, and consider the inverse relation f−1. It’s a function because f is injective, and it’s
total because f is surjective. We need to show that f−1 is a bijection from Y to X. Because f
is total, every a ∈ X maps to some b ∈ Y . Then f−1(b) = a, so f is surjective. Finally, suppose
f−1(b1) = f−1(b2). Then there exists a ∈ X such that f(a) = b1 and f(a) = b2. But f is a function,
so b1 = b2, and f−1 is injective. It follows that f−1 is a bijection. So, R5 is symmetric.

Finally, suppose X, Y, Z ⊆ D are such that (X, Y ) ∈ R5 and (Y, Z) ∈ R5. Then there exist
total bijective functions f : X → Y and g : Y → Z. Consider the function h : X → Z defined by
h(a) = g(f(a)). This is a total function because f is defined on all of X, and g is defined on all of
Y , which means it’s defined on all of f(X) ⊆ Y .

Now we show that h is a bijection. First suppose h(a1) = h(a2). This means that g(f(a1)) =
g(f(a2)). Since g is injective, f(a1) = f(a2). It follows that a1 = a2 because f is injective as well.
Now suppose b ∈ Z. Since g is surjective, there is some c ∈ Y such that b = g(c). Furthermore, f
is surjective, so there is some a ∈ X such that c = f(a). Then b = g(c) = g(f(a)) = h(a), and we
see that h is surjective. Thus, (X, Z) ∈ R5, and R5 is transitive.

It follows that R5 is an equivalence relation.
We said in Lecture 16 that if f is a total bijective function from X to Y , then |X| = |Y |. Thus,

X and Y can be in the same equivalence class only if |X| = |Y |. We prove that the equivalence
classes are the sets {X ⊆ D | |X| = r} for r ∈ {0, 1, . . . , |D|}. In particular, we construct a bijection
from X to Y for any X, Y ⊆ D such that |X| = |Y | = r. Let a1, a2, . . . , ar be an enumeration of
X, and b1, b2, . . . , br an enumeration of Y . Then the function f : X → Y defined by f(ai) = bi is a
total bijective function from X to Y .

Finally, we argue that R5 is not antisymmetric, thus showing it is not an order relation. For
example, consider X = {a} and Y = {b}. There is a total bijection f from X to Y (just set
f(a) = b), and its inverse is a total bijection from Y to X (we have f−1(b) = a). Thus, (X, Y ) ∈ R5

and (Y, X) ∈ R5, but X 6= Y . It follows that R5 is not antisymmetric. Therefore, it is not an order
relation.

Problem 3

Part One

To show that RL is an equivalence relation, we must show that it is reflexive, symmetric, and
transitive. We will prove these in order.

Reflexive: We note that xz = xz. So, the statement (xz ∈ L ⇐⇒ xz ∈ L) evaluates to either
T ⇐⇒ T or F ⇐⇒ F for all z. In either case, the expression is true. As this holds for
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every x and z, RL is reflexive.

Symmetric: We note that ⇐⇒ is a symmetric relationship. That is, if P ⇐⇒ Q holds, then
Q ⇐⇒ P also holds. Assume we have (x, y) ∈ RL then (∀z)xz ∈ L ⇐⇒ yz ∈ L, so
(∀z)yz ∈ L ⇐⇒ xz ∈ L, which means that (y, x) ∈ RL.

Transitive: Finally, we note that ⇐⇒ is a transitive relationship. That is, if P ⇐⇒ Q and
Q ⇐⇒ R holds, then P ⇐⇒ R holds. This can be shown directly; P ⇐⇒ Q forces P
and Q to the same truth values, and Q ⇐⇒ R does the same for Q and R. Thus, P and R
must have the same truth values as well.

Now assume we have (x, y) ∈ RL and (y, w) ∈ RL. Then, for any z, xz ∈ L ⇐⇒ yz ∈ L and
yz ∈ L ⇐⇒ wz ∈ L. Letting P denote xz ∈ L, Q denote yz ∈ L, and R denote wz ∈ L, we
see that xz ∈ L ⇐⇒ wz ∈ L. As the latter holds for every z, we have that (x, z) ∈ RL.

Having shown that RL is reflexive, symmetric, and transitive, we have shown that RL is an
equivalence relation.

Part Two

(i) First, we examine an arbitrary string x, say the empty string x = λ, and determine its
equivalence class [x], i.e., the set of strings y such that xRLy. We note that if we append any
string z to λ, we obtain z, so λz is in L if and only if z has an even number of 1s. Looking at
the definition of RL, we need to determine for which strings y the following holds: For every
string z, z has an even number of 1s iff yz has an even number of 1s. Since the number of 1s
in yz is the sum of the number of ones in y and the number of 1s in z, the latter holds iff y
has an even number of 1s, i.e., iff y ∈ L. Thus, [λ] = L.

The latter implies that for every x ∈ L, [x] = L. Thus, we have determined the equivalence
class of every element in L.

Next, we consider an arbitrary element for which we haven’t determined the equivalence class
yet, say x = 1. Now xz is in L iff z has an odd number of ones. Thus, [1] consists of all
strings y for which the following holds: For every string z, z has an odd number of 1s iff yz
has an even number of 1s. By a similar reasoning as above, the latter holds iff y has an odd
number of 1s, i.e., iff y ∈ L. Thus, [1] = L.

Since L and L cover all of D, we have determined all the equivalence classes of RL, namely
L and L.

(ii) Again, we start by determining the equivalence class of an arbitrary string, say x = 01. We
note that for any string z with k − 1 1s, xz is in L; the same is true for any string with a
number of 1s equal to 2k − 1, 3k − 1, etc.... Any string z that does not fit this format, i.e.,
for which the number of 1s is not one less than a multiple of k, xz is not in L.

Letting k = 3 for the moment, we note that the string 10111 has the same behavior as 01. In
fact, all strings with 1, 4, 7, ... total 1s will do so. So for k = 3, one equivalence class is the
set of strings whose number of 1s modulo 3 is 1.

More generally, for any positive integer k, the equivalence classes of RL are Xi = { all strings
such that the number of 1s taken modulo k is equal to i}, for i = 0....k − 1. The argument
for an arbitrary Xi being an equivalence class is as follows:
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Take any x ∈ Xi, and any string z. Then xz ∈ L iff z has a number of 1s equal to k − i
modulo k, since then and only then xz has a number of 1s equal to 0 modulo k (in other
words, a number of 1s equal to a multiple of k). Then, yz ∈ L iff y has a number of 1s equal
i modulo k, i.e., iff y ∈ Xi.

Since
⋃

Xi = D, the Xi’s are all the equivalence classes for any positive integer k.

For k = 0, L consists of all strings with no 1s. In this case, xz is in L iff both x and z are in
L. The above reasoning shows that the equivalence classes are L and L.

(iii) We note that this is similar to (ii), in that strings that have the same number of 1s will fall
into the same equivalence class. For example, 01 will be in the same class as 100. Since
L contains strings with an exact number of 1s, rather than a multiple, we also note that if
01z ∈ L for some z, the only other strings y where yz ∈ L will be those where y has exactly
one 1.

However, note that there are some strings x fro which there is no z such that xz ∈ L. For
example, if k = 3 and x = 1111, the string xz will never have 3 1s no matter what z is. For
any two such strings x, the if and only if condition for RL will evaluate to F ⇐⇒ F . So
these strings are all in the same equivalence class.

In this case, then, the equivalence classes of RL are Xi = { all strings such that the number
of 1s is equal to i}, i = 0, ..., k, and Y = { all strings with more than k 1s}. The argument
for an arbitrary Xi is as follows:

Take any x ∈ Xi, and any string z. Then xz ∈ L iff z has a number of 1s equal to k − i in
order for xz to have k 1s. Then yz ∈ L iff y has exactly i 1s, i.e., iff y ∈ Xi.

For the equivalence class Y , note that for any x ∈ Y , (∀z)xz 6∈ L. Since the only strings x
with the latter property are exactly those in Y , we have that Y is an equivalence class of RL.

We see that
⋃

Xi ∪ Y = D, so these are all the equivalence classes.

Problem 4

(a) Let x and y be any two integers, and z be their supremum. Then, as per the definition
of the supremum, z should satisfy the following conditions: (i) x ≤ z, (ii) y ≤ z, and (iii)
(∀z′)(x ≤ z′∧y ≤ z′ ⇒ z ≤ z′). From the first two conditions, we can conclude that z has to be
at least as much as the greater of x and y. Let z = max(x, y). Now we claim that z satisfies the
third condition as well, for if any z′ is at least as much as both of x and y, then it is as much as
z. Moreover, max(x, y) is the only value with these properties. Hence, sup(x, y) = max(x, y).

Again consider two integers x and y, and let z be their infimum. Then, z should satisfy the
following conditions: (i) z ≤ x, (ii) z ≤ y, and (iii) (∀z′)(z′ ≤ x ∧ z′ ≤ y ⇒ z′ ≤ z). From the
first two conditions, z ≤ min(x, y). We claim that z = min(x, y) is the infimum of x and y.
This is because if any z′ satisfies the first two conditions, then z′ would be at most z. Hence,
inf(x, y) = min(x, y).

(b) At first it might appear that a similar argument as above would work and that sup(x, y) =
max(x, y) + 1, and inf(x, y) = min(x, y) − 1. But this is not correct. In fact, neither a
supremum nor an infimum exist for any x and y. Indeed, consider any z satisfying the first
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two conditions. As we can choose z′ = z in the third condition and for that choice of z′ the
hypothesis x < z′∧y < z′ holds, the third condition requires that z < z. But this is impossible,
so no integer can act as supremum of x and y. Similarly, we can show that no integer can act
as infimum of x and y.

(c) The three conditions are: (i) x|z, (ii) y|z, and (iii) (∀z′)(x|z′ ∧ y|z′ ⇒ z|z′). By (i) and (ii),
z is a multiple of both x and y. The least such natural number is the LCM of x and y. Let
z = LCM(x, y). It suffices to prove that any other natural number z′ such that x|z′ and y|z′

satisfies z|z′. We have that z ≤ z′ since z was assumed to be the least possible common multiple
of x and y. Then, by using the division algorithm, we get that z′ = zq + r where 0 ≤ r < z.
Since x divides z′ and z, x has to divide r as well. Similarly, y has to divide r as well. But
if both x and y divide r, then r has to be 0 as z is the LCM of x and y and r < z. Hence,
sup(x, y) = LCM(x, y).

Now, let us work out the infimum of x and y. The three conditions are: (i) z|x, (ii) z|y, and
(iii) (∀z′)(z′|x ∧ z′|y ⇒ z′|z). By (i) and (ii), z is a divisor of both x and y. Hence, a possible
candidate for inf(x, y) is GCD(x, y). Now, we show that z = GCD(x, y) satisfies (iii) as well,
i.e., any divisor of x and y is a divisor of z as well. Consider any positive integer z′ such
that z′|x and z′|y. Recall from part 4(c) of HW 4 that there exist integers u and v such that
z = GCD(x, y) = ux + vy. Since z′ divides both x and y, z′ also divides ux + vy and therefore
divides z. Therefore, z does satisfy (iii) and is the only positive integer satisfying all three
conditions, so inf(x, y) = GCD(x, y).

(d) The three conditions in this case are: (i) x ⊆ z, (ii) y ⊆ z, and (iii) (∀z′)(x ⊆ z′ ∧ y ⊆ z′ ⇒
z ⊆ z′). Let z = x ∪ y. Then, z satisfies the first two conditions. Now, we need to show that
it also satisfies (iii). Consider any z′ which satisfies the premises in (iii). Now consider any
α ∈ z. Then, α ∈ x ∨ α ∈ y. This means that α ∈ z′, which means that z ⊆ z′. Hence,
sup(x, y) = x ∪ y.

Now, let us work out the infimum of x and y. The three conditions in this case are: (i) z ⊆ x,
(ii) z ⊆ x, and (iii) (∀z′)(z′ ⊆ x ∧ z′ ⊆ y ⇒ z′ ⊆ z). Let z = x ∩ y. Then, z satisfies the first
two conditions. Now, we need to show that it also satisfies (iii). Consider any z′ which satisfies
the premises in (iii). Now consider any α ∈ z′. Then, α ∈ x ∧ α ∈ y. This means that α ∈ z,
which means that z′ ⊆ z. Hence, inf(x, y) = x ∩ y.

Problem 5

We will interpret this problem as a digraph, where the n people playing the game are vertices, and
a directed edge eij exists from every person i to its nearest neighbor (and thus their water balloon
target) j. We then see that a survivor in the graph is a vertex which has no directed edge ending
at itself, i.e., a vertex with indegree 0.

We now make the following statement: The only possible cycles of positive length have length
2. There are no cycles of length 1 as there are no selfloops. We prove by contradiction that there
are no cycles of length larger than 2.

Let us denote by d(u, v) the distance between players u and v. Consider any three consecutive
vertices u, v, and w on a cycle. If u and w are distinct, then the existence of the edge from v to w
implies that d(v, w) < d(v, u). Since d(v, u) = d(u, v) and any three consecutive points on a cycle
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of length more than 2 are distinct, this means that the distance of two consecutive points on a cycle
of length 3 strictly decreases as we go around the cycle. However, the latter is impossible because
the graph is finite, so at some point we will reach the same pair (u, v) as we started from, so we’d
obtain the contradiction that d(u, v) < d(u, v).

Given the above statement, we present two ways to finish the proof that there is at least one
survivor when the number of players is odd.

The first proof is by contradiction. Suppose there is no survivor. Then every vertex has indegree
at least 1. By construction, every vertex has outdegree exactly one. Since the sum of the outdegrees
and indegrees are the same, this implies that every vertex has indegree and outdegree 1. This means
that the digraph is a collection of disjoint cycles. Since every cycle consists of exactly two players
and the number of players is odd, this is impossible.

Alternately, we can give a proof by induction that every every integer k ≥ 0, a game with 2k+1
players has at least one survivor.

The base case k = 0 is trivial as there is only one player. For the induction step P (k) ⇒ P (k+1),
first note that the digraph for 2k + 3 players has to contain a cycle. This is because every vertex
has outdegree 1 and the digraph is finite, so if we start from an arbitrary vertex and keep following
the outgoing edge, there has to be a point where we hit a vertex for the second time, and we have
a cycle between the first time and the second time we hit that vertex.

Consider any such cycle. We know that the cycle has length 2. Thus there is a pair of vertices
(u, v) which have directed edges to each other. We can see if we remove these two players, the
number of survivors in the remaining 2k + 1 player graph will be less than or equal to the number
of survivors in the original 2k + 3 player graph. This is because removing u and v from the graph
does not remove any edges which end at any of the other 2k + 1 players (but may add new such
edges, since u and v may have had multiple edges ending at each of them in the original graph).
From our inductive hypothesis, any 2k + 1 player game has at least one survivor. So the 2k + 3
game will have at least one survivor as well.

Thus, all games with an odd number of players have at least one survivor, and the proof is
complete.
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