Solutions to Homework 8

Instructor: Dieter van Melkebeek

Problem 1

To prove our if and only if statement (expressible as $P \Longleftrightarrow Q$), it is necessary to show both directions hold. We will first show that if a graph contains any cycles of odd length, it is not bipartite $(\neg Q \Rightarrow \neg P)$. Then, we will show that if a graph contains no cycles of odd length, it must be bipartite $(Q \Rightarrow P)$.

Part One: $\neg Q \Rightarrow \neg P$

We first show that a graph is not bipartite if it contains any cycles of odd length. Starting at an arbitrary vertex u in this cycle, we note that there is a path of length $2 k+1$ from u to v. We also note that to be bipartite, we must alternate placing vertices on this path into the partitions L and R . However, if we place u in L , then, we see that after following the path along $2 k+1$ edges, we must place u in R, a contradiction. A symmetric argument can be shown for placing u in R initially.

Now, we must also show that if a graph contains no cycles of odd length, it will be bipartite. We do so through an inductive proof on the number of vertices in the graph.

Part Two: $Q \Rightarrow P$
If a graph has one vertex, it is clearly bipartite assuming no self loops (which would be a cycle of odd length). This vertex can be labeled either L or R .

Now, assume that any graph with n vertices that contains no cycles of odd length can be labeled as bipartite. We must show that a graph with $\mathrm{n}+1$ vertices that contains no cycles of odd length can be labeled bipartite as well.

Taking any vertex v in the graph, we will remove v and all edges incident to v from our G to attain the minor G^{\prime}. Since G^{\prime} has n vertices and no cycles of odd length (removing v can only remove cycles from G entirely, not decrease their length), G^{\prime} is bipartite by our inductive hypothesis. In order to add v and its edges back into G while maintaining the bipartite property, we must have all neighbors of v belonging to the same partition. Consider all pairs of vertices connected to v in the original graph G. We will denote one such pair as (u, w). Note that if no such pair exists (\mid Neighbor $(v) \mid<2$), all neighbors of v necessarily belong to the same partition.

If u and w belong to the same connected component in the minor G^{\prime}, then there is at least one path between u and w which does not involve our selected vertex. We note that a path of length two necessarily exists between u and w in the original graph G, namely the path $u \rightarrow v \rightarrow w$. These two paths can be combined create a cycle in G. Since the total length of a cycle in G must even from our assumption, any path between u and w in G^{\prime} will necessarily be even as well.

Then, u and w will have at least one even path connecting them in G^{\prime}. This even path forces u and w to belong to the same partition (either L or R) when the resulting n -vertex graph is labeled as bipartite.

If u and w do not belong to the same connected component in the minor G^{\prime}, we note that each of the connected components u and w belong to can be labeled as bipartite independently of the other. In this case, we can label each subgraph in a way such that u and w belong to the same partition (either L or R).

So, all pairs of vertices connected to v can be put into the same partition (either L or R); this means that all vertices connected to v can be put into the same partition. Then, we can add v back into G by placing v into the opposite partition; this gives us a bipartite graph of size $\mathrm{n}+1$. We have proved both directions of the implication, and our proof is complete.

Problem 2

We start with some examples and show how to use them to come up with a solution to this problem.
Figure 1 shows the graphs for $n=12$ and various values of d. We can see varying numbers of connected components. In some case the graph is connected, and in some cases it is not.

Figure 1: Some examples with $n=12$.
As expected, when $d=1$, the edges go around the circle, and the graph is connected in that case. We show this in Figure 1a.

On the other hand, when $d=4$, we see in Figure 1b that the graph has multiple connected components (shown in different colors). In particular, each component is a cycle of length 3 (and
looks like an equilateral triangle), and there are four of them. You would also find that there are two disjoint cycles of length 6 when $d=2$, and three disjoint cycles of length 4 when $k=3$. Note that 2,3 and 4 all divide 12 , so we suspect that when d divides n, we get a graph that is not connected.

Suppose $n=k d$. Label the vertices from v_{0} to v_{n-1} as one goes around the circle. The vertices v_{0} and v_{d} form an angle of $\frac{2 \pi}{n} \cdot d$. Hence, they have an edge between them. Similarly, vertices v_{d} and $v_{2 d}$ are connected by an edge. Continuing this process, we end with an edge between $v_{(k-1) d}$ and $v_{k d}$. But $n=k d$, so $v_{k d}$ is actually v_{0}. We have obtained a cycle of length $k=n / d$. Note that each vertex has as at most two edges incident on it: one connecting it to a vertex that appears d points clockwise from it on the circle, and one connecting it to a vertex that appears d points counterclockwise from it on the circle. Therefore, there is no path from the vertices on the cycle we constructed to any vertex that is not on that cycle, and the graph is not connected in this case. It follows that if $d>1$, the cycle we constructed does not contain all vertices of the graph, and the graph is disconnected.

So our first guess could be that the graph is not connected when d divides n, and connected otherwise. The cases $d=5, d=6$ and $d=7$ may reinforce that belief. We show the case $d=5$ in Figure 1c. Note that the graph is connected and that 5 does not divide 12. But then we come to the cases $d=8$ (the graph looks like the one in Figure 1b) and $d=9$ (the graph is in Figure 1d). Neither 8 nor 9 divide 12, but the graphs are not connected in those two cases. So the situation is a little more complicated.

What is the difference between the case $d=7$ and $d=9$, then? We see that $\operatorname{gcd}(7,12)=1$ and the graph is connected, whereas $\operatorname{gcd}(9,12)=3$ and the graph is not connected. It looks like all the other values of d follow a similar pattern. If $\operatorname{gcd}(d, n)=1$, the graph is connected, and the graph is not connected otherwise. We now prove that this amended conjecture is correct.

Let's figure out when are two vertices connected. Consider vertices v_{i} and v_{j} such that $i<j$. In that case they form an angle of $\frac{2 \pi}{n} \cdot s$ where $s=j-i$. Each edge connects vertices that form an angle of $\frac{2 \pi}{n} \cdot d$. Then if we start at v_{i} and following k such edges, we end in a vertex that forms an angle of $\theta=k \cdot \frac{2 \pi}{n} \cdot d$ with the starting vertex. If we want to end in v_{j} after k steps, this angle should be the same as the angle $\frac{2 \pi}{n} \cdot s$, which means it should have the form $\frac{2 \pi}{n} \cdot s+2 \pi r$ for some integer r. (It is not sufficient to say the angle should be $\frac{2 \pi}{n} \cdot s$ because the angle θ could be more than 2π. For example, the angle covered by a path of length 3 from v_{0} to v_{3} in Figure 1 c is $3 \cdot \frac{10 \pi}{12}>2 \pi$.) So the angle between v_{i} and v_{j} satisfies

$$
k \cdot \frac{2 \pi}{n} \cdot d=\frac{2 \pi}{n} \cdot s+2 \pi r .
$$

We can divide by $\frac{2 \pi}{n}$ and rearrange the equation to get

$$
\begin{equation*}
s=k d-r n . \tag{1}
\end{equation*}
$$

Since $\operatorname{gcd}(d, n)$ divides d and n, it divides the right-hand side of (1). Hence, s is divisible by $\operatorname{gcd}(d, n)$ as well, and we have proved the following claim.

Claim 1. There is a path from vertex v_{i} to vertex v_{j} only if $s=j-i$ is a multiple of $\operatorname{gcd}(d, n)$.
In case when $\operatorname{gcd}(d, n)>1$, Claim 1 tells us that the graph is disconnected. For example, vertices v_{0} and v_{1} cannot be connected by a path in this case.

To complete the proof of our conjecture, we show that if s is divisible by $\operatorname{gcd}(d, n)$, there is a path of length k from v_{i} to v_{j} for some k. This will prove that the graph is connected when $\operatorname{gcd}(d, n)=1$.

Recall the following result about the greatest common divisor which we proved in Problem 4 of Homework 4.

Lemma 1. Let $a, b \in \mathbb{N}$. Then there exist integers u and v such that $\operatorname{gcd}(a, b)=u \cdot a+v \cdot b$.
Lemma 1 implies that there exist integers u and v such that $\operatorname{gcd}(d, n)=u d+v n$. Hence, if $s=t \cdot \operatorname{gcd}(d, n)$, we have $t \cdot \operatorname{gcd}(d, n)=t u d+t v n$, and there is a path of length $k=t u$ from v_{i} to v_{j}. This proves the converse of Claim 1.

Claim 2. Suppose i and j with $i<j$ are such that $\operatorname{gcd}(d, n)$ divides $s=j-i$. Then there is a path from vertex v_{i} to vertex v_{j}.

Note that $s \in\{0, \ldots, n-1\}$. If $\operatorname{gcd}(d, n)=1$, every possible value of s is a multiple of $\operatorname{gcd}(d, n)$, and, therefore, the graph is connected by Claim 2. On the other hand, if $\operatorname{gcd}(d, n)>1$, Claim 1 implies that vertices v_{0} and v_{1} are not connected because $1=1-0$ is not divisible by $\operatorname{gcd}(d, n)$.

For the sake of completeness, let's restate our answer: The graph is connected if and only if $\operatorname{gcd}(d, n)=1$. (Upon further inspection, we see that the graph is split into $\operatorname{gcd}(d, n)$ cycles of length $n / \operatorname{gcd}(d, n)$, but we don't need that for this problem.)

Problem 3

Part One

Recall the definition of isomorphism; two graphs G and H are isomorphic if and only if there is a one-to-one function f between the vertices of G and H such that $\forall u, v \in V:(u, v) \in G \Longleftrightarrow$ $(f(u), f(v)) \in H$. To show that two graphs are isomorphic, we can provide the function f . To show that two graphs are non-isomorphic, we make use of the fact that two isomorphic graphs will share the same structural properties. Examples of these properties are number of edges/vertices, number of strongly connected components, whether the graph is planar, etc.

We first note that graph G_{2} has 16 edges, in contrast to graphs G_{1}, G_{3}, and G_{4} which all have 15 . We know that in order for graphs to be isomorphic, they must have an equal number of vertices and edges; so straightaway we know that G_{2} is not isomorphic to any of the other graphs. Alternately, G_{2} has two vertices of degree four (those being 8 and 10); there are no such counterparts in any of the other three graphs.

A quick check shows that graphs G_{1} and G_{3} are isomorphic. Assigning vertices starting with $1: 1$, and seeking to preserve symmetry in both graphs, we end up with

	$G_{1}(v)$	$G_{3}(v)$
1	1	
6	10	
10	7	
7	4	
4	6	
3	5	
5	2	
2	9	
8	3	
9	8	

Comparing the edges in the two graphs, we have

$G_{1}(u, v)$	$G_{3}(u, v)$
1,2	1,9
1,5	1,2
1,6	1,10
2,3	9,5
2,9	9,8
3,4	5,6
3,7	5,4
4,5	6,2
4,10	6,7
5,8	2,3
6,7	10,4
6,10	10,7
7,8	4,3
8,9	3,8
9,10	8,7

So G_{1} and G_{3} are isomorphic.
Comparing G_{1} and G_{4}, we note that if all edges are preserved between graphs, all cycles must be preserved as well Note, however, that in G_{4}, there are a number of cycles of length 4 (for example, $1,6,9,5)$. It can be quickly verified that no cycle of this length exists in G_{1}. So we can conclude that G_{1} and G_{4} are not isomorphic.

Since isomorphism is a transitive relation, we can further conclude that G_{3} and G_{4} are not isomorphic. We have compared all pairs, and thus are finished.

Part Two

We can see immediately that G_{4} is a planar graph; its representation as given has no intersecting edges.

For G_{1}, we note that if we contract the edges $(1,6),(2,9),(3,7),(4,10)$, and $(5,8)$, this will cause the minor G_{1}^{\prime} as seen below. Then, G_{1}^{\prime} is isomorphic to K_{5}, which we know to be non-planar. So G_{1} is non-planar as well. Since G_{3} is isomorphic to G_{1}, by the same argument G_{3} is non-planar.

to

An alternate proof that G_{1} is non planar goes as follows: we assume for the moment that G_{1} is planar. Note that the smallest cycle in G_{1} is of length 5 . Considering the set of edge-face pairs $B=\{(e, f) \in E \times F \mid e$ is on the border of $f\}$, we see that $|B| \geq 5|F|$. However, we also know that every individual edge can only border two faces; so $|B| \leq 2|E|$. However, applying Euler's formula (which states that $|V|-|E|+|F|=2$), we see that if G_{1} is a planar graph, $|F|=7$. Since $|E|=15$, this gives the inequality $35 \leq|B| \leq 30$, a contradiction. So G_{1} cannot be planar.

Finally, for G_{2}, we note that if we contract the edges $(1,6),(3,4),(7,9)$ and $(8,10)$, the resulting graph G_{2}^{\prime} will contain only the edges $(5,1),(5,7),(5,3),(2,1),(2,7),(2,3)$, and (8 , $1),(8,7),(8,3)$. Then as seen below, this minor G_{2} ' is isomorphic to $K_{3,3}$, which we know to be non-planar. So G_{2} is non-planar as well.

to

to

Alternately, we can prove that G_{2} is nonplanar by contradiction; assuming that G_{2} is planar, we see that according to Euler's formula $|F|=2+16-10=8$. We note that in this graph, there exists only one cycle of length 3 ; further, vertex 6 is involved in three cycles of length 5 . Considering the set of vertex-face pairs $B=\{(v, f) \in V \times F \mid v$ is on the border of $f\}$, we see that $|B| \geq 3 \cdot 5+1 \cdot 3+4 \cdot 4=34$ (Three faces with five vertices, one face with three vertices, and the remaining faces with more than three vertices each). However, we also note that any individual vertex can at most be connected to a number of faces equal to its degree. This gives $|B| \leq 32$. But now $34 \leq|B| \leq 32$, a contradiction. So G_{2} cannot be planar.

Problem 4

Part a

Let $G=(V, E)$ be a simple planar graph without self-loops. We show that every connected component contains a vertex of degree 5 or less. Assume without loss of generality that G is connected and let F be the set of its faces.

We argue by contradiction. Suppose that all vertices in G have degree at least 6 . We show that this causes a violation of Euler's formula:

$$
\begin{equation*}
|V|-|E|+|F|=2 \tag{2}
\end{equation*}
$$

We proved in Lecture 18 that $\sum_{v \in V} \operatorname{deg}(v)=2|E|$, and by our assumption that every vertex has degree at least 6 we have $\sum_{v \in V} \operatorname{deg}(v) \geq \sum_{v \in V} 6=6|V|$. It follows that $2|E| \geq 6|V|$, and $|E| \geq 3|V|$. We rewrite this as

$$
\begin{equation*}
|V| \leq \frac{|E|}{3} \tag{3}
\end{equation*}
$$

Next, G is simple and doesn't have self-loops, which means that every face has at least three edges on its border. Having just one edge on the border of a face would imply that edge is a selfloop, while G doesn't have any self-loops by assumption, and having only two edges on the border of a face would imply the two edges are between the same pair of vertices, thus contradicting the assumption that G is simple.

So consider the set $B=\{(e, f) \in E \times F \mid e$ is on the boundary of $f\}$. We bound its size in two different ways.

First, every edge can be on the boundary of at most two faces, so

$$
|B|=\sum_{e \in E}(\text { number of faces with } e \text { on their border }) \leq \sum_{e \in E} 2=2|E| .
$$

Second, since every face has at least 3 edges on its border, we have

$$
|B|=\sum_{f \in F}(\text { number of edges on the border of } f) \geq \sum_{f \in F} 3=3|F| \text {. }
$$

Combining these two observations yields $3|F| \leq|B| \leq 2|E|$, so

$$
\begin{equation*}
|F| \leq \frac{2|E|}{3} \tag{4}
\end{equation*}
$$

Substituting (3) and (4) into the left-hand side of (2) yields $|V|-|E|+|F| \leq \frac{1}{3}|E|-|E|+\frac{2}{3}|E|=0$. But the right-hand side of (2) is 2 , so we have a contradiction with (2). It follows that every simple planar graph without self-loops has at least one vertex of degree at most 5 .

Part b

We prove that we can color the vertices of a planar graph G without self-loops using six colors by induction on the number of vertices. The main idea is that if a vertex v has degree 5 or less, we can defer assigning a color to it until the very end. This is because its neighbors can have at most five different colors in any coloring, so there will be one color left for v. We now proceed with the proof.

For the base case, consider a simple planar graph with 1 vertex. We can assign an arbitrary color to this vertex to get a six-coloring.

Now assume that we can color any simple planar graph H on n vertices without self-loops using at most six colors. Consider a simple planar graph G on $n+1$ vertices without self-loops.

By part (a), G has a vertex of degree at most 5 . Let v be one such vertex. Consider the subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G formed by all vertices of G except for v, and all edges of G except for those incident on v. The resulting subgraph G^{\prime} is a simple planar graph on n vertices without self-loops because it's a subgraph of a simple planar graph without self-loops. Thus, six colors are sufficient for coloring the vertices of G^{\prime} by the induction hypothesis. Since all edges between two of vertices in V^{\prime} that appear in G also appear in G^{\prime}, we get a valid coloring of all vertices of G except for v. To complete the six-coloring of G, just color v with a color that is not used to color any of its (at most five) neighbors in G. This completes the proof.

Problem 5

Each person can shake hands at most six times. Since Alice received seven different replies, therefore these replies were the seven different numbers in the range [0,6]. Let us label everyone, except Alice, as P_{i} where i is the number of times that person shook hands.

Consider the person P_{6}. P_{6} shook hands six times. Since a person cannot shake hands with their spouse, therefore P_{6} shook hands with everyone else at the party except her spouse. On the other hand, P_{0} did not shake hands with any one at the party. Apart from P_{0} and P_{6}, there were only six other people at the party. So P_{6} shook hands with all of them. Hence, P_{0} and P_{6} are a couple and that Alice shook hands with P_{6}. Note that Alice and P_{0} did not shake hands since P_{0} did not shake hands with any one.

If we remove P_{0} and P_{6} from the context, we would left with people P_{1}, \ldots, P_{5} and Alice. Also, we need to discount the handshakes P_{0} and P_{6} were involved in. P_{0} did not shake hands with any one, while P_{6} shook hands with every one. So, the remaining P_{i} 's shook hands $i-1$ times with the people left. Now consider $P_{5} . P_{5}$ shook hands four times with people P_{1} to P_{4} and Alice. Also, P_{5} did not shake hands with her spouse. We also know that P_{1} did not shake hands with any of the remaining persons. This means that P_{5} shook hands with P_{2}, P_{3}, P_{4} and Alice. Therefore, P_{5} and P_{1} are a couple. We can also infer that Alice shook hands with P_{5} and not with P_{1}.

We now reduce the problem further to that involving four persons - P_{2}, P_{3}, P_{4} and Alice. We have the following information - P_{2} shook hands with none of the remaining persons, P_{3} shook hand of one person, P_{4} shook hands with two of the remaining persons. Similar as above, we can reason that P_{4} and P_{2} are a couple and that Alice shook hands with P_{4} and that she did not shake hands with P_{2}. Since we are now left with only P_{3} and Alice, therefore P_{3} has to be Bob.

Hence, Alice and Bob both shook hands three times each.

