
CS/Math 240: Intro to Discrete Math 4/14/2011

Solutions to Homework 8

Instructor: Dieter van Melkebeek

Problem 1

To prove our if and only if statement (expressible as P ⇐⇒ Q) , it is necessary to show both
directions hold. We will first show that if a graph contains any cycles of odd length, it is not
bipartite (¬Q⇒ ¬P ). Then, we will show that if a graph contains no cycles of odd length, it must
be bipartite (Q⇒ P ).

Part One: ¬Q⇒ ¬P

We first show that a graph is not bipartite if it contains any cycles of odd length. Starting at an
arbitrary vertex u in this cycle, we note that there is a path of length 2k + 1 from u to v. We
also note that to be bipartite, we must alternate placing vertices on this path into the partitions L
and R. However, if we place u in L, then, we see that after following the path along 2k + 1 edges,
we must place u in R, a contradiction. A symmetric argument can be shown for placing u in R
initially.

Now, we must also show that if a graph contains no cycles of odd length, it will be bipartite.
We do so through an inductive proof on the number of vertices in the graph.

Part Two: Q⇒ P

If a graph has one vertex, it is clearly bipartite assuming no self loops (which would be a cycle of
odd length). This vertex can be labeled either L or R.

Now, assume that any graph with n vertices that contains no cycles of odd length can be labeled
as bipartite. We must show that a graph with n + 1 vertices that contains no cycles of odd length
can be labeled bipartite as well.

Taking any vertex v in the graph, we will remove v and all edges incident to v from our G to
attain the minor G′. Since G′ has n vertices and no cycles of odd length (removing v can only remove
cycles from G entirely, not decrease their length), G′ is bipartite by our inductive hypothesis. In
order to add v and its edges back into G while maintaining the bipartite property, we must have
all neighbors of v belonging to the same partition. Consider all pairs of vertices connected to v
in the original graph G. We will denote one such pair as (u, w). Note that if no such pair exists
(|Neighbor(v)| < 2), all neighbors of v necessarily belong to the same partition.

If u and w belong to the same connected component in the minor G′, then there is at least one
path between u and w which does not involve our selected vertex. We note that a path of length
two necessarily exists between u and w in the original graph G, namely the path u → v → w.
These two paths can be combined create a cycle in G. Since the total length of a cycle in G must
even from our assumption, any path between u and w in G′ will necessarily be even as well.

Then, u and w will have at least one even path connecting them in G′. This even path forces u
and w to belong to the same partition (either L or R) when the resulting n-vertex graph is labeled
as bipartite.
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If u and w do not belong to the same connected component in the minor G′, we note that each
of the connected components u and w belong to can be labeled as bipartite independently of the
other. In this case, we can label each subgraph in a way such that u and w belong to the same
partition (either L or R).

So, all pairs of vertices connected to v can be put into the same partition (either L or R); this
means that all vertices connected to v can be put into the same partition. Then, we can add v
back into G by placing v into the opposite partition; this gives us a bipartite graph of size n+1.
We have proved both directions of the implication, and our proof is complete.

Problem 2

We start with some examples and show how to use them to come up with a solution to this problem.
Figure 1 shows the graphs for n = 12 and various values of d. We can see varying numbers of

connected components. In some case the graph is connected, and in some cases it is not.
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(d) n = 12, d = 3 or d = 9, not
connected.

Figure 1: Some examples with n = 12.

As expected, when d = 1, the edges go around the circle, and the graph is connected in that
case. We show this in Figure 1a.

On the other hand, when d = 4, we see in Figure 1b that the graph has multiple connected
components (shown in different colors). In particular, each component is a cycle of length 3 (and
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looks like an equilateral triangle), and there are four of them. You would also find that there are
two disjoint cycles of length 6 when d = 2, and three disjoint cycles of length 4 when k = 3. Note
that 2, 3 and 4 all divide 12, so we suspect that when d divides n, we get a graph that is not
connected.

Suppose n = kd. Label the vertices from v0 to vn−1 as one goes around the circle. The vertices
v0 and vd form an angle of 2π

n · d. Hence, they have an edge between them. Similarly, vertices vd
and v2d are connected by an edge. Continuing this process, we end with an edge between v(k−1)d
and vkd. But n = kd, so vkd is actually v0. We have obtained a cycle of length k = n/d. Note that
each vertex has as at most two edges incident on it: one connecting it to a vertex that appears
d points clockwise from it on the circle, and one connecting it to a vertex that appears d points
counterclockwise from it on the circle. Therefore, there is no path from the vertices on the cycle
we constructed to any vertex that is not on that cycle, and the graph is not connected in this case.
It follows that if d > 1, the cycle we constructed does not contain all vertices of the graph, and the
graph is disconnected.

So our first guess could be that the graph is not connected when d divides n, and connected
otherwise. The cases d = 5, d = 6 and d = 7 may reinforce that belief. We show the case d = 5 in
Figure 1c. Note that the graph is connected and that 5 does not divide 12. But then we come to
the cases d = 8 (the graph looks like the one in Figure 1b) and d = 9 (the graph is in Figure 1d).
Neither 8 nor 9 divide 12, but the graphs are not connected in those two cases. So the situation is
a little more complicated.

What is the difference between the case d = 7 and d = 9, then? We see that gcd(7, 12) = 1 and
the graph is connected, whereas gcd(9, 12) = 3 and the graph is not connected. It looks like all the
other values of d follow a similar pattern. If gcd(d, n) = 1, the graph is connected, and the graph
is not connected otherwise. We now prove that this amended conjecture is correct.

Let’s figure out when are two vertices connected. Consider vertices vi and vj such that i < j.
In that case they form an angle of 2π

n · s where s = j − i. Each edge connects vertices that form an
angle of 2π

n · d. Then if we start at vi and following k such edges, we end in a vertex that forms an
angle of θ = k · 2πn ·d with the starting vertex. If we want to end in vj after k steps, this angle should
be the same as the angle 2π

n · s, which means it should have the form 2π
n · s+ 2πr for some integer

r. (It is not sufficient to say the angle should be 2π
n · s because the angle θ could be more than 2π.

For example, the angle covered by a path of length 3 from v0 to v3 in Figure 1c is 3 · 10π12 > 2π.) So
the angle between vi and vj satisfies

k · 2π

n
· d =

2π

n
· s+ 2πr.

We can divide by 2π
n and rearrange the equation to get

s = kd− rn. (1)

Since gcd(d, n) divides d and n, it divides the right-hand side of (1). Hence, s is divisible by
gcd(d, n) as well, and we have proved the following claim.

Claim 1. There is a path from vertex vi to vertex vj only if s = j − i is a multiple of gcd(d, n).

In case when gcd(d, n) > 1, Claim 1 tells us that the graph is disconnected. For example,
vertices v0 and v1 cannot be connected by a path in this case.
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To complete the proof of our conjecture, we show that if s is divisible by gcd(d, n), there is
a path of length k from vi to vj for some k. This will prove that the graph is connected when
gcd(d, n) = 1.

Recall the following result about the greatest common divisor which we proved in Problem 4 of
Homework 4.

Lemma 1. Let a, b ∈ N. Then there exist integers u and v such that gcd(a, b) = u · a+ v · b.

Lemma 1 implies that there exist integers u and v such that gcd(d, n) = ud + vn. Hence, if
s = t · gcd(d, n), we have t · gcd(d, n) = tud+ tvn, and there is a path of length k = tu from vi to
vj . This proves the converse of Claim 1.

Claim 2. Suppose i and j with i < j are such that gcd(d, n) divides s = j− i. Then there is a path
from vertex vi to vertex vj.

Note that s ∈ {0, . . . , n−1}. If gcd(d, n) = 1, every possible value of s is a multiple of gcd(d, n),
and, therefore, the graph is connected by Claim 2. On the other hand, if gcd(d, n) > 1, Claim 1
implies that vertices v0 and v1 are not connected because 1 = 1− 0 is not divisible by gcd(d, n).

For the sake of completeness, let’s restate our answer: The graph is connected if and only if
gcd(d, n) = 1. (Upon further inspection, we see that the graph is split into gcd(d, n) cycles of length
n/ gcd(d, n), but we don’t need that for this problem.)

Problem 3

Part One

Recall the definition of isomorphism; two graphs G and H are isomorphic if and only if there is
a one-to-one function f between the vertices of G and H such that ∀u, v ∈ V : (u, v) ∈ G ⇐⇒
(f(u), f(v)) ∈ H. To show that two graphs are isomorphic, we can provide the function f. To show
that two graphs are non-isomorphic, we make use of the fact that two isomorphic graphs will share
the same structural properties. Examples of these properties are number of edges/vertices, number
of strongly connected components, whether the graph is planar, etc.

We first note that graph G2 has 16 edges, in contrast to graphs G1, G3, and G4 which all have 15.
We know that in order for graphs to be isomorphic, they must have an equal number of vertices and
edges; so straightaway we know that G2 is not isomorphic to any of the other graphs. Alternately,
G2 has two vertices of degree four (those being 8 and 10); there are no such counterparts in any of
the other three graphs.

A quick check shows that graphs G1 and G3 are isomorphic. Assigning vertices starting with
1:1, and seeking to preserve symmetry in both graphs, we end up with
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(b) G3

G1(v) G3(v)
1 1
6 10
10 7
7 4
4 6
3 5
5 2
2 9
8 3
9 8

Comparing the edges in the two graphs, we have

G1(u, v) G3(u, v)
1, 2 1, 9
1, 5 1, 2
1, 6 1, 10
2, 3 9, 5
2, 9 9, 8
3, 4 5, 6
3, 7 5, 4
4, 5 6, 2
4, 10 6, 7
5, 8 2, 3
6, 7 10, 4
6, 10 10, 7
7, 8 4, 3
8, 9 3, 8
9, 10 8, 7

So G1 and G3 are isomorphic.
Comparing G1 and G4, we note that if all edges are preserved between graphs, all cycles must be

preserved as well Note, however, that in G4, there are a number of cycles of length 4 (for example,
1, 6, 9, 5). It can be quickly verified that no cycle of this length exists in G1. So we can conclude
that G1 and G4 are not isomorphic.
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Since isomorphism is a transitive relation, we can further conclude that G3 and G4 are not
isomorphic. We have compared all pairs, and thus are finished.

Part Two

We can see immediately that G4 is a planar graph; its representation as given has no intersecting
edges.

For G1, we note that if we contract the edges (1, 6), (2, 9), (3, 7), (4, 10), and (5, 8), this will
cause the minor G′1 as seen below. Then, G′1 is isomorphic to K5, which we know to be non-planar.
So G1 is non-planar as well. Since G3 is isomorphic to G1, by the same argument G3 is non-planar.
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An alternate proof that G1 is non planar goes as follows: we assume for the moment that G1

is planar. Note that the smallest cycle in G1 is of length 5. Considering the set of edge-face pairs
B = {(e, f) ∈ E × F | e is on the border of f}, we see that |B| ≥ 5 |F |. However, we also know
that every individual edge can only border two faces; so |B| ≤ 2 |E|. However, applying Euler’s
formula (which states that |V | − |E|+ |F | = 2), we see that if G1 is a planar graph, |F | = 7. Since
|E| = 15, this gives the inequality 35 ≤ |B| ≤ 30, a contradiction. So G1 cannot be planar.

Finally, for G2, we note that if we contract the edges (1, 6), (3, 4), (7, 9) and (8, 10), the
resulting graph G′2 will contain only the edges (5, 1), (5, 7), (5, 3), (2, 1), (2, 7), (2, 3), and (8,
1), (8, 7), (8, 3). Then as seen below, this minor G2’ is isomorphic to K3,3, which we know to be
non-planar. So G2 is non-planar as well.
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Alternately, we can prove that G2 is nonplanar by contradiction; assuming that G2 is planar,
we see that according to Euler’s formula |F | = 2 + 16 − 10 = 8. We note that in this graph,
there exists only one cycle of length 3; further, vertex 6 is involved in three cycles of length 5.
Considering the set of vertex-face pairs B = {(v, f) ∈ V ×F | v is on the border of f}, we see that
|B| ≥ 3 · 5 + 1 · 3 + 4 · 4 = 34 (Three faces with five vertices, one face with three vertices, and the
remaining faces with more than three vertices each). However, we also note that any individual
vertex can at most be connected to a number of faces equal to its degree. This gives |B| ≤ 32. But
now 34 ≤ |B| ≤ 32, a contradiction. So G2 cannot be planar.

Problem 4

Part a

Let G = (V,E) be a simple planar graph without self-loops. We show that every connected
component contains a vertex of degree 5 or less. Assume without loss of generality that G is
connected and let F be the set of its faces.

We argue by contradiction. Suppose that all vertices in G have degree at least 6. We show that
this causes a violation of Euler’s formula:

|V | − |E|+ |F | = 2. (2)

We proved in Lecture 18 that
∑

v∈V deg(v) = 2|E|, and by our assumption that every vertex
has degree at least 6 we have

∑
v∈V deg(v) ≥

∑
v∈V 6 = 6|V |. It follows that 2|E| ≥ 6|V |, and

|E| ≥ 3|V |. We rewrite this as

|V | ≤ |E|
3
. (3)

Next, G is simple and doesn’t have self-loops, which means that every face has at least three
edges on its border. Having just one edge on the border of a face would imply that edge is a self-
loop, while G doesn’t have any self-loops by assumption, and having only two edges on the border
of a face would imply the two edges are between the same pair of vertices, thus contradicting the
assumption that G is simple.

So consider the set B = {(e, f) ∈ E ×F | e is on the boundary of f}. We bound its size in two
different ways.

First, every edge can be on the boundary of at most two faces, so

|B| =
∑
e∈E

(number of faces with e on their border) ≤
∑
e∈E

2 = 2|E|.

Second, since every face has at least 3 edges on its border, we have

|B| =
∑
f∈F

(number of edges on the border of f) ≥
∑
f∈F

3 = 3|F |.

Combining these two observations yields 3|F | ≤ |B| ≤ 2|E|, so

|F | ≤ 2|E|
3
. (4)

Substituting (3) and (4) into the left-hand side of (2) yields |V |−|E|+|F | ≤ 1
3 |E|−|E|+

2
3 |E| = 0.

But the right-hand side of (2) is 2, so we have a contradiction with (2). It follows that every simple
planar graph without self-loops has at least one vertex of degree at most 5.
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Part b

We prove that we can color the vertices of a planar graph G without self-loops using six colors by
induction on the number of vertices. The main idea is that if a vertex v has degree 5 or less, we
can defer assigning a color to it until the very end. This is because its neighbors can have at most
five different colors in any coloring, so there will be one color left for v. We now proceed with the
proof.

For the base case, consider a simple planar graph with 1 vertex. We can assign an arbitrary
color to this vertex to get a six-coloring.

Now assume that we can color any simple planar graph H on n vertices without self-loops using
at most six colors. Consider a simple planar graph G on n+ 1 vertices without self-loops.

By part (a), G has a vertex of degree at most 5. Let v be one such vertex. Consider the
subgraph G′ = (V ′, E′) of G formed by all vertices of G except for v, and all edges of G except
for those incident on v. The resulting subgraph G′ is a simple planar graph on n vertices without
self-loops because it’s a subgraph of a simple planar graph without self-loops. Thus, six colors are
sufficient for coloring the vertices of G′ by the induction hypothesis. Since all edges between two of
vertices in V ′ that appear in G also appear in G′, we get a valid coloring of all vertices of G except
for v. To complete the six-coloring of G, just color v with a color that is not used to color any of
its (at most five) neighbors in G. This completes the proof.

Problem 5

Each person can shake hands at most six times. Since Alice received seven different replies, therefore
these replies were the seven different numbers in the range [0,6]. Let us label everyone, except Alice,
as Pi where i is the number of times that person shook hands.

Consider the person P6. P6 shook hands six times. Since a person cannot shake hands with
their spouse, therefore P6 shook hands with everyone else at the party except her spouse. On the
other hand, P0 did not shake hands with any one at the party. Apart from P0 and P6, there were
only six other people at the party. So P6 shook hands with all of them. Hence, P0 and P6 are a
couple and that Alice shook hands with P6. Note that Alice and P0 did not shake hands since P0

did not shake hands with any one.
If we remove P0 and P6 from the context , we would left with people P1, ..., P5 and Alice. Also,

we need to discount the handshakes P0 and P6 were involved in. P0 did not shake hands with any
one, while P6 shook hands with every one. So, the remaining Pi’s shook hands i− 1 times with the
people left. Now consider P5. P5 shook hands four times with people P1 to P4 and Alice. Also, P5

did not shake hands with her spouse. We also know that P1 did not shake hands with any of the
remaining persons. This means that P5 shook hands with P2, P3, P4 and Alice. Therefore, P5 and
P1 are a couple. We can also infer that Alice shook hands with P5 and not with P1.

We now reduce the problem further to that involving four persons – P2, P3, P4 and Alice. We
have the following information – P2 shook hands with none of the remaining persons, P3 shook
hand of one person, P4 shook hands with two of the remaining persons. Similar as above, we can
reason that P4 and P2 are a couple and that Alice shook hands with P4 and that she did not shake
hands with P2. Since we are now left with only P3 and Alice, therefore P3 has to be Bob.

Hence, Alice and Bob both shook hands three times each.
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