
CS/Math 240: Intro to Discrete Math 4/21/2011

Solutions to Homework 9

Instructor: Dieter van Melkebeek

Problem 1

A tree is a connected graph with out simple cycles. Since the given graph G is connected, we only
need to prove that it cannot contain any cycles. Let’s use induction on the number of vertices to
prove that the graph cannot contain any cycles and hence is a tree.

For the base case, consider a connected graph with one vertex. The number of edges is 0. This
graph is does not contain any cycles. Therefore, it is a tree.

Now consider a connected graph of n + 1 vertices and n edges. Since the graph is connected,
therefore each vertex has at least one edge incident on it. We claim that there is at least one vertex
which has exactly one edge incident on it. Suppose there is no such vertex. This implies that

each vertex has a degree of at least 2. From lecture 18, we know that
∑
v∈V

deg(v) = 2|E|. Since

deg(v) ≥ 2 for all the vertices, therefore
∑
v∈V

deg(v) ≥ 2(n+ 1). This means that |E| ≥ n + 1 but

the graph has only n edges. Hence, there is at least one vertex with degree exactly 1. Let’s label
this vertex as v and its only neighbor as u. We claim that the graph G′ = (V \ {v}, E \ {(u, v)}) is
connected. Since v has degree one in the original graph, therefore the only vertex that could have
possibly been disconnected is u. But then no path between u and any other vertex w could have
used the edge (v, u). Hence G′ is still connected. Note that G′ has n vertices and n− 1 edges. By
induction hypothesis, G′ does not contain any cycles. If we now add back the vertex v and the
edge (u, v), the graph will not contain any cycle, v has degree 1. Hence, G does not contain any
cycles and hence is a tree. This completes the proof.

Problem 2

Let’s first work out a couple of example trees so as to understand how the given program, TreeRep-
resentation, behaves.

For the graph in Figure 1, on each iteration of the loop, the leaf with smallest label will be
selected. So, on the first iteration leaf labeled 1 will be selected, on the second iteration leaf with
label 2 will be selected and so on. For each of these leaves, the neighbor is labeled 9. Hence,
A[i] = 9 for all 1 ≤ i ≤ n− 2.

For the graph in Figure 2, on the first iteration vertex labeled 1 will be selected. Its neighbor is
the vertex labeled 2. When the vertex with label 1 is removed, its neighbor will become a leaf which
is selected in the second iteration. Its neighbor is the vertex with label 3. We continue with this
process until we are left with only two vertices in the tree. Hence, A[i] = i+ 1 for all 1 ≤ i ≤ n− 2.

We make some observations about the TreeRepresentation algorithm.

• First, notice that in each iteration of the for loop, one leaf and its incident edge is removed
from G. Since G starts out as the given tree T on n vertices, it follows by induction that at

1

Figure 1 Figure 2

the start of the ith iteration, G is a subgraph of T that is a tree on n+ 1− i vertices. After
the last iteration, there is a subtree with 2 vertices left, i.e., a single edge of the original tree
T .

• In the first iteration, the smallest leaf ` of T and its incident edge e are removed. The
other endpoint of e is A[1]. The remaining tree T ′ has vertex set {1, 2, . . . , n} − {`}, and
TreeRepresentation(T) is just the concatenation of A[1] with A′

.
= TreeRepresentation(T ′).

• Every vertex v of T appears exactly deg(v)−1 times in A[1..n−2]. This follows by induction
on n, based on the decomposition of the previous bullet. In particular, the leaves of T are
exactly those vertices that do not appear in A[1..n− 2].

Part a

The second bullet suggests the following recursive approach for recovering T from A: Determine
the edge e that is first deleted, recover T ′ from A′ = A[2..n − 2], and add e to T ′ to obtain T .
We implement this approach in an iterative way by determining the edges that TreeRepresentation
removes in order, collecting them in a set E, and adding the single remaining edge at the end.

In order to do so, we initialize E to the empty set, and maintain the set L of leaves of
G throughout the algorithm. By the third bullet, L needs to be initialized to {1, 2, . . . , n} −
{A[1], A[2], . . . , A[n− 2]}. Once we the intial value of L, we know the leaf ` that is removed in the
first step of TreeRepresentation, namely ` = min(L). The unique vertex to which ` is connected is
A[1], so the edge e that is removed in the first step is {b, A[1]}. We add e to E. After we remove `
and its incident edge e from G, the set of leaves L needs to be updated. The vertex ` is removed
from L, and the other endpoint A[1] is added to L if it became a leaf. By the last two bullets, the
latter is the case iff A[1] does not appear in A′ = A[2..n− 2].

We repeat this step n− 2 times. The only edge that still needs to be added to E is the single
edge that remains at the end. The endpoints of this edge form L, i.e., the edge is just L.

The leads to the following algorithm.

2

Function ConstructTree(A, n)

Input: n: integer, n ≥ 2,
A: an array of length n− 2 with entries in V = {1, 2, 3, · · · , n}
Output: a tree T = (V,E) such that TreeRepresentation(T, n) = A

(1) E ← ∅
(2) L← {1, 2, · · · , n} − {A[1], A[2], · · · , A[n− 2]}
(3) for i = 1 to n− 2 do
(4) `← min(L)
(5) E ← E ∪ {{`, A[i]}}
(6) L← L− {`}
(7) if A[i] 6∈ {A[i+ 1], · · · , A[n− 2]} then
(8) L← L ∪ {A[i]}
(9) E ← E ∪ {L}

Part b

Given any array A with n − 2 entries in the range {1, 2, 3, · · · , n}, we can always construct a
tree whose representation is the array A. In order to prove this, we first need to argue that
ConstructTree always outputs a tree. Let us name the obtained output as T = (V,E). We have
n vertices, therefore |V | = n. The loop in the algorithm adds one edge to E in each iteration and
n − 2 is number of loop iterations. We also add one more edge to the graph after the execution
of the loop is over. So in all we add n − 1 edges, therefore |E| = n − 1. We know that an acyclic
graph with n vertices and n− 1 edges is a tree. So, we only need to argue that T does not contain
any cycles.

To argue the latter, observe that when we add the edge {`, A[i]} during the ith iteration, no
later iteration can add edges that are incident with `. This is because all subsequent edges consist
of vertices from L − {`} and from A[i + 1..n − 2], and neither contains `. Thus, if we look at the
list of edges in reverse order of being added to E, each edge introduces a new vertex, which implies
there can be no cycles.

This completes the proof that ConstructTree always outputs a tree T . That TreeRepresentation(T)
equals the given array A follows because in every step of ConstructTree we add the edge that
TreeRepresentation removes (or has left at the end). This also implies that the tree T is unique.

Since the construction is always possible for any A and it is unique as well, we can conclude
that the number of distinct trees on V is same as the number of different possible A. Since array
A has n− 2 positions each of which can be filled with any of the n possible vertex labels, therefore
the number of distinct trees on V is nn−2.

Problem 3

Part a

We begin by examining PT for small values of n, where n = |V |. When n = 1, we see that there are
x possible colorings of G, which correspond to the x possible colors the solitary vertex can have.
When n = 2, we see that once we fix a vertex to a color (of which there are x to choose from), the
second vertex can only be set to one of the remaining x− 1 colors. So Pt for n = 2 is x(x− 1).

3

We can extend this reasoning to a tree of arbitrary size by noting that for this tree, once we
set a single vertex to a color (of which there are x to choose from), this constrains the neighbors
of the vertex to have one of the remaining x − 1 colors. When these neighbors have their colors
set, they will in turn constrain their neighbors (those vertices that are a distance of two from the
original vertex) to have a different color than themselves (again, x− 1 colors to choose from since
these new vertices may now have the same color as the original vertex).

To justify our argument, we formalize the above procedure as follows:

(1) Designate an arbitrary vertex of the tree as the root.

(2) Direct all edges away from the root. We now have a directed acyclic graph.

(3) Perform a topological sort on the tree. We know this is possible for any DAG.

(4) Color vertices from left to right. Each vertex v but the first will have in-degree 1 (otherwise,
this would imply two paths from the root to v - a cycle in the original graph). As such, these
vertices will have a single coloring constraint on them.

So each vertex in the tree besides the start vertex will be constrained to take on one of x − 1
colors. Then, our total number of colorings PT for a tree with n vertices is x(x− 1)n−1.

Part b

We will argue this statement in two parts; first, we will show that any valid coloring of G′e will have
a unique mapping to a valid coloring of G \ e with u, v as the same color. Then, we will show that
any valid coloring of G \ e with u, v as the same color has a unique mapping to a valid coloring of
G′e. This will show that the number of valid colorings of each graph is exactly equal.

Take a valid coloring of G′e. If we apply the same coloring (besides the colors of u and v) to G\e,
this coloring will certainly be valid for all vertices excepting u and v, since these are unchanged
between graphs. In G′e, the vertex (uv) has a number of constraints from other vertices which
restrict its color. We see that the individual constraints on u and v in G \ e from other vertices
must be as or less strict. So u and v can be set to the same color as uv; and thus any valid coloring
of G′e can be translated into a valid coloring of G \ e with u and v the same color. This mapping
is unique, as it retains all the colors from the original G′e.

Now, take a valid coloring of G \ e, where u and v have the same color (say, c). This means
that in this coloring, any neighbor of u or v do not have the color c. If we apply this same coloring
to G′e, we see that any neigbor of u or v is now a neighbor of the contracted uv. So none of these
neighbors of uv have the color c; as such, uv can be validly assigned the color c. In this way, any
valid coloring of G \ e, where u and v have the same color can be translated into a valid coloring
of G′e. This mapping is unique, as it retains all the colors from the original G \ e.

We have shown a bijection between the valid colorings of G′e and G \ eu=v. As such, the
cardinality of each set is equal.

Part c

We will perform an induction on the number of edges in G. Then, P (0) is the following: A graph
with no edges has a polynomial PG. We see this is true; there are no constraints on any vertex in
G, so PG is simply xn, where n is the number of vertices in the graph.

4

Now, assume P (m): any graph with m edges has a polynomial PG. We will show that any
graph with m+ 1 edges also has a polynomial PG.

Taking any graph G with m+1 edges, we can remove an arbitrary edge e = (u, v) to form G\e;
this graph has m edges, and as such has a polynomial PG\e. This polynomial is certainly larger
than PG, since G has the additional constraint that u and v must not have the same color.

Note that if we contract the same edge e to form G′e, this graph has m edges and as such, a
polynomial PG′

e
. From (b), we know that this is the same as the number of valid colorings of G \ e

with at most x colors in which u and v have the same color. In other words, these are exactly the
colorings of G \ e that are invalid in G. We see that

PG = PG\e − PG′
e

(1)

Since the difference of two polynomials is a polynomial, it follows that PG is polynomial. So
P (m+ 1) holds, and our proof is complete.

Part d

Extending our observations from (a), we note that in any graph, if we set the colors of each vertex
in an iterative process, each time we set the color of a vertex it introduces a constraint on that
vertex’s neighbors. Each vertex, then, will have a number of possible colors conditional on its
neighbors that have already been colored. This number falls in the range x...(x − n), where n is
the highest degree of a vertex in G. The total number of colorings of G will be the product of these
possibilities (or zero, if any term falls below 1).

In this way, we see immediately that the degree of PG should equal the number of vertices in G
(since each vertex will have its own term that leads with x). Since the coefficient of each of these
terms is 1, we note that the coefficient of the highest-order term is necessarily 1 as well.

We can formalize this argument as a proof by induction on the number of edges in G. Let P (0)
be the statement: A graph with 0 edges and n vertices has PG with degree equal to n; the coefficient
of xn = 1. We recall that PG = xn for a graph with no edges; so P (0) holds.

Now, assuming P (m), we show P (m+1); a n-vertex graph with m+1 edges has PG with degree
equal to n, and leading coefficient 1. To prove this, we refer to our equation from (c); specifically,
we refer to equation (1).

Note that both PG\e and PG′
e

have m edges; so by the IH the degree of PG\e is n (and further,
the xn term has coefficient 1. PG′

e
has one less vertex than our original graph due to contraction;

so its degree is n− 1. So PG\e − PG′
e

will have degree n (and further, leading coefficient 1). From
equation (1), then, we see that P (m+ 1) holds.

It remains to be seen what the coefficient of the second-highest term represents. Taking our
examples from (a), and examining a number of other small examples (for example, PK3 = (x)(x−
1)(x− 2) = x3 − 3x2 + 2x), we note that this coefficient is equal to − |E|, the number of edges in
the graph G. Again, this can be seen more clearly from our inductive proof in (c).

Originally, in a no-edge graph, there is no second degree term; so the second-highest coefficient
is 0. We assume that in a m-edge graph, the second-highest coefficient is the number of edges. So
for PG\e in our proof for (c), the coefficient of the second highest degree term of PG\e is −m.

We note that PG′ is a graph with one less vertex than PG\e; so it has degree one less. The
coefficient of this highest-degree term is 1. So PG\e − PG′ results in a polynomial whose second
highest degree term has a coefficient one less than the coefficient of PG\e. Then, this coefficient is

5

−1 ∗ (m) − 1 = −1 ∗ (m + 1). Thus, in an m + 1-edge graph, the second-highest coefficient is the
number of edges as well.

Problem 4

Part 1

The language D0 consists of all multiples of zero. Thus, the only string in the language is the string
0. We designed a finite automaton that accepts only one string of length 1 in Lecture 22. We show
the automaton in Figure 3.

sinit s0

sg

0

1, 2
0, 1, 2

0, 1, 2

Figure 3: The finite state automaton M1 for the language D0.

Part 2

The language D1 consists of all multiples of one. Therefore, any string that starts with a 1 or a 2
is in the language. The only string in the language that starts with 0 is the string 0. Any other
string starting with zero violates the requirement that there be no leading zeros.

We design a finite state automaton M2 for this language. We start in state sinit, and never
come back to this state. The machine M2 goes to state s0 on input 0. This is an accepting state
because 0 is in the language. From s0, M2 transitions to the garbage state sg on all inputs, and
this state is not accepting because all such inputs are part of a string with a leading zero. If M2

gets to state sg, it can’t get out of it. On input 1 or 2 in state s, M2 goes to state s1, and never
leaves that state afterwards because any string that starts with a 1 or a 2 is in the language.

sinit s0

s1 sg

0

1, 2 0, 1, 2

0, 1, 2 0, 1, 2

Figure 4: The finite state automaton M2 for the language D1.

6

Part 3

You could try to write down the first few even numbers in ternary and see if there is a pattern.
The first few even numbers are 0, 2, 11, 20, 22, 101, 110, 112, 121, 200, It is a little tricky to
see the pattern, so let’s try a different approach.

Using the notation from Lecture 22, the string x = x1x2 . . . xN is the ternary representation of
the number Val(x) =

∑N
i=1 ai3

N−i. In Lecture 22 we designed an automaton that accepts binary
representations of multiples of an integer k. We use the same strategy to design an automaton that
accepts ternary representations of multiples of 2.

Let’s start by ignoring the issue of leading zeros and design a machine M ′3 that accepts ternary
representations of multiples of 2 with leading zeros (and also the empty string). For each possible
remainder after dividing by 2, there is one state. The state s′0 indicates that the first n digits
represent an even integer (in other words, the remainder after dividing Val(x1x2 . . . xn) by 2 is 0),
and s′1 indicates that they represent an odd integer (the remainder is 1). We make the state s′0
accepting and the state s′1 is rejecting.

Now consider what happens when M ′3 reads the (n + 1)st digit. It is in state s′i where
Val(x1x2 . . . xn) mod 2 = i. Now Val(x1x2 . . . xnxn+1) = 3 · Val(x1x2 . . . xn) + xn+1. We would
like to know what this is modulo 2 as that will give us the transition function. This is a problem
we left as an exercise in Lecture 22, and now solve it in full generality.

Lemma 1. For any a, n ∈ Z and any integer c ≥ 2, cn+ a mod c = a mod c.

Proof. Write a = cq + r where c ∈ Z and 0 ≤ r < c. Then r is the remainder of a after dividing
by c. We have cn+ a = cn+ cq + r = c(n+ q) + r, and we see that the remainder of cn+ a after
dividing by c is the same as the remainder after dividing a by c.

Lemma 2. For any a, b, n ∈ Z and any integer c ≥ 2,

(b(n mod c) + a) mod c = (bn+ a) mod c (2)

Proof. Write a = cq + r, b = cs+ t, and n = cu+ v where q, s, u ∈ Z and 0 ≤ r, t, v < c.
Then n mod c = v, so b(n mod c)+a = (cs+ t)v+ cq+ r = csv+ tv+ cq+ r = c(sr+ q)+ tv+ r,

so (b(n mod c) + a) mod c = (tv + r) mod c by the previous lemma.
Now let’s manipulate the right-hand side. We have bn + a = (cs + t)(cu + v) + cq + r =

c2su+ csv+ ctu+ tv+ cq+ r = c(csu+ sv+ tu+ q) + tv+ r, and we can apply the previous lemma
to get (bn+ a) mod c = (tv + r) mod c.

We have shown that both sides of (2) are the same, and we are done.

We can now use Lemma 2 to design the transition function the same way as in Lecture 22.
When M ′3 is in state s′i, it goes to state s′(3i+xn+1) mod 2 after it reads xn+1.

When the machine starts, it hasn’t read anything, and we declare that the part of the input
read so far is even. Thus, the machine starts in state s′0. We show the machine in Figure 5a. Using
the same strategy as in Lecture 22, we convert the machine from Figure 5a to the machine M3 for
D2, which is shown in Figure 5b.

We offer an alternative description of strings in D2 that will be used later. Note that 3N−i is
odd for all i ∈ {1, . . . , N}. Now whenever xi is even, that is, either 0 or 2, the term xi3

N−i is
even. If xi = 1, the term xi3

N−i is odd, and this is the only way how it can be odd. Then the sum

7

s′0 s′1
1

1

0, 2 0, 2

(a) An automaton M ′
3 that accepts

ternary representations of multiples
of 2, including those with leading
zeros.

sinit

s′0 s′1

s0 sg

1

1

0, 2 0, 2

0, 1, 2

0, 1, 2

2

1

0

(b) The finite state automaton M3 for the lan-
guage D2.

Figure 5: Designing a finite state automaton for the language D2.

∑N
i=1 xi3

N−i is even if and only if an even number of the coefficients xi is odd. Therefore, a string
x is in D2 if and only if it contains an even number of ones, and doesn’t start with 0 unless x = 0.

Observe that the automaton M ′3 accepts exactly those strings that contain an even number of
ones. We saw a similar automaton in Lecture 21 for binary strings.

Part 4

The language L1 is a modification of D2. The empty string is now allowed, and the string 0 is not
allowed.

Let’s design a finite state automaton M4 for this language by modifying M3. Since 0 was the
only string in D2 that starts with a zero, and this string is now disallowed, we can drop the state
s0 of M3, and send M4 to the garbage state sg right after it reads the initial 0. Everything else
stays the same. We show the automaton in Figure 6.

Observe that the only difference between D2 and L1 is the fact that no nonempty string in L1

starts with a zero, and that unlike D2, L1 contains the empty string. So L1 consists of all nonempty
strings that don’t start with a zero and contain an even number of ones, together with the empty
string.

Part 5

The language L2 = L1D2 consists of all concatenations of two strings, one from L1 and one from
D2, i.e., L2 = {xy | x ∈ L1, y ∈ D2}. We show that L2 = D2.

First, we argue that L2 ⊆ D2. The language L1 contains no strings that start with a zero, and
contains the empty string ε. Consider a string z = xy in L2 with x ∈ L1 and y ∈ D2. If z starts
with zero, x = ε because no string in L1 starts with a zero, and y = z, so z ∈ D2. If z does not start

8

sinit

s′0 s′1

sg

1

1

0, 2 0, 2

0, 1, 2

2

1

0

Figure 6: The finite state automaton M4 for the language L1.

with a zero, both x and y contain an even number of ones, so their concatenation also contains an
even number of ones. Because the string z does not start with a zero and contains an even number
of ones, our alternative characterization of D2 implies that z ∈ D2.

Conversely, consider any string w ∈ D2. Then the string z = εw where ε is the empty string
belongs to L2 because ε ∈ L1 and w ∈ D2. But εw = w, so w ∈ L2, and it follows that L2 ⊆ D2.

We have shown that L2 = D2. The finite state automaton for this language is M3 in Figure 5b.

Part 6

We show that L∗1 = L1. To get some intuition, consider our alternative characterization of L1.
This language contains all strings that don’t start with a zero and contain an even number of ones.
Concatenating any number of such strings results in another string that does not start with a zero
and has an even number of ones. The only string we did not consider is the empty string ε ∈ L0

1,
and the empty string is in L1 by definition. We argue more formally in the paragraphs that follow.

The containment L1 ⊆ L∗1 follows by the definition of Kleene closure. We argue the other
containment by induction. In particular, we show that Lk

1 ⊆ L1 for all k ∈ N.
We have L0

1 = {ε}, and ε ∈ L1, so L0
1 ⊆ L1, which proves the base case. We also have L1

1 = L1,
so L1 ⊆ L1 also holds.

Now assume Li
1 ⊆ L1 for some i ≥ 1. We can write Li+1

1 = L1L
i
1. Consider any string z ∈ Li+1

1 ,
which we can write as z = y1y2 . . . yiyi+1 where yk ∈ L1 for k ∈ {1, . . . , i + 1}. Now the string
y′ = y2y3 . . . yn+1 is a concatenation of n strings from L1, so it’s in L1 by the induction hypothesis.
It follows that we can write z = y1y

′ where y1, y
′ ∈ L1. There are two cases to consider.

Case 1: y1 = ε or y′ = ε. Then z = y′ or z = y1, and both of those are in L1, so z ∈ L1.
Case 2: y1, y

′ 6= ε. In that case y1 consists of an even number of ones by our alternative
characterization of D2. The same holds about y′, so the concatenation of y1 and y′ also contains an
even number of zeros. Furthermore, the concatenation does not start with a zero and is nonempty,
so it’s in L1.

Thus, Lk
1 ⊆ L1 for all k ∈ N. This implies that L∗1 =

⋃∞
k=0 L

k
1 ⊆

⋃∞
k=0 L1 = L1, which completes

9

the proof that L∗1 = L1.

Now L3 is the concatenation of a string in L1 followed by a zero. Since ε ∈ L1 and no other
string in L1 starts with a zero, the only string in L3 that starts with a zero is the string 0.

Consider a nonempty string in L1. Such a string contains an even number of ones, so it’s a
multiple of 2. Also, since it ends with a zero, Val(x1x2 . . . xN) =

∑N
i=1 xi3

N−i =
∑N−1

i=1 xi3
N−i+0 =

3
∑N−1

i=1 xi3
N−1−i, which means that the string represents a number that is divisible by 3. Any

integer that is divisible by 2 and 3 is divisible by 6, so we have just shown that every nonempty
string in L1 followed by a zero is in D6. Since 0 is also a multiple of 6, we actually get L3 ⊆ D6.

Now consider any multiple of 6, and let x = x1x2 . . . xN be its ternary representation. Since
Val(x) is an even number, x ∈ D2. Furthermore, any multiple of 6 is divisible by 3, so the last digit
in its ternary representation is a zero. To see that, consider

Val(x1x2 . . . xN) =
N−1∑
i=1

xi3
N−i + xN = 3

N−1∑
i=1

xi3
N−1−i + xN ,

and note that the only way the right-hand side is divisible by 3 is if xN = 0. This also implies that
all occurrences of 1 in x appear in x′ = x1x2 . . . xN−1. Since x contains an even number of ones, so
does x′ by the previous sentence. Also note that x′ does not start with a zero because otherwise x
would be a string with leading zeros, which is something that cannot happen for a string in D6. It
follows that x′ is a string with an even number of ones that does not start with a zero (the empty
string is a possibility, and it also satisfies this characterization), so x′ ∈ L1. It follows that x ∈ L3.
Hence, D6 ⊆ L3, and L3 = D6.

We can design the automaton M6 for this language exactly the same way as we designed M3.
The automaton is in Figure 7.

sinit

s′0 s′1 s′2 s′3 s′4 s′5

s0 sg

0

1

2 0

1

2

0

1

2 0

1

2

0

1

2

0

1

2

0, 1, 2

0, 1, 2

1

2

0

Figure 7: The finite state automaton M6 for the language L3.

10

Part 7

Now let’s analyze the language L4 = ((D2 \ {0}){xx | x ∈ {0, 1, 2}∗}) ∪ {0}. To simplify notation,
let R = {xx | x ∈ {0, 1, 2}∗}.

First let’s focus on the set R = {xx | x ∈ {0, 1, 2}∗}. To get a string in this set, take any
sequence x of zeros, ones, and twos, and write it down twice. Such a sequence has an even number
of ones because it contains twice the number of ones in x. Thus, if we attach it at the end of a
nonzero string from D2, we get another nonempty string that does not start with zero and has an
even number of ones. This string is in D2 by our alternative characterization of D2 from Part 3.
Since the string doesn’t start with zero, it is in D2\{0}, and we get that (D2\{0})R ⊆ D2\{0}. The
other containment also holds since if x ∈ D2\{0}, then xε ∈ (D2\{0})R, so (D2\{0})R = D2\{0}.

Now we have L4 = ((D2 \ {0})R) ∪ {0} = (D2 \ {0}) ∪ {0} = D2. The finite state automaton
for this language is M3 in Figure 5b.

Problem 5

Part a

We model the situation the monk is facing using a finite state machine.
The states are tuples (r, g) where r is the number of red beads and g is the number of green

beads the monk has in his bowl. The monk starts in the state (15, 12).
The input alphabet is the set {exchange, swap}.
On exchange, the monk goes from state (r, g) to state (r − 3, g + 2). On swap, the monk goes

from state (r, g) to state (g, r).

The definition of a finite state machine requires that the number of states be finite, but there are
infinitely many pairs (r, g) with r, g ∈ N. We argue that only a finite number of those is necessary
in order to characterize all states the monk can be in. For that, we analyze how the quantity
s = r + g changes during the monk’s stay at the monastery.

Let the monk’s state after i days be (ri, gi), and let si = ri + gi. We have r0 + g0 = 27. The
transitions change the value of s as follows. If the monk performs an exchange on day i + 1, the
new sum is si+1 = ri+1 +gi+1 = r−3+g+2 = r+g−1 = si−1, and if the monk performs a swap,
the new sum is si+1 = si because he just changes all beads one for one. Thus, s can either stay the
same or decrease by one on any given day, which means that s never exceeds its initial value of 27.

Using the previous paragraph, we can give a rough upper bound on the number of states, thus
showing that this number is finite. Since the monk cannot have a negative number of beads of any
color, r, g ≥ 0, and there are at most 28 ways to set r and g so that r + g = s for any value of s.
Because there are at most 28 possible values of s, we need at most 282 out of the infinitely many
pairs (r, g) to describe all the states a monk can be in.

Part b

To show that the monk never leaves the monastery, it suffices to show that he can’t reach state
(5, 5) from the start state (15, 12). For that, we analyze the quantity d = r − g.

Let the monk’s state after i days be (ri, gi), and let di = ri − gi. If the monk performs an
exchange on the next day, the difference becomes di+1 = (ri − 3)− (gi + 2) = ri − gi − 5 = di − 5.
After a swap, the difference becomes di+1 = gi − ri = −(ri − gi) = −di.

11

Let’s examine the possible values of d. At the beginning, we have d = 15− 12 = 3. If the monk
keeps performing exchanges, the difference keeps decreasing by 5 so some possible differences are
3,−2,−7,−12,−17, In any state, the monk can perform a swap, which flips the sign of the
difference. Thus, more possible differences are . . . , 17, 12, 7, 2,−3. If the monk performs exchanges
in those states, he can reach states . . . , 17, 12, 7, 2,−3,−8,−13, Performing an exchange in
one of those states takes the monk to one of the states . . . , 13, 8, 3,−2,−7,−12,−17, . . ., and we
have seen this situation already. It looks like we have found all the possibilities for the difference
r − g, and zero is not among them. This indicates that the monk should not be able to leave the
monastery.

We now give a formal proof. Let’s start with an invariant.

Invariant 1. After i days, di = 2 + 5xi or di = 3 + 5xi for some xi ∈ Z.

Proof. We argue by induction. For the base case, we have d0 = r0−g0 = 15−12 = 3, so d0 = 3+5x0
for x0 = 0.

Now assume that the invariant holds after day i. There are four cases to consider, depending
on which form di takes and which action the monk takes on day i+ 1.

Case 1.1: di = 3+5xi, action = exchange. Then we get di+1 = di−5 = 3+5xi−5 = 3+5(xi−1),
so the invariant is maintained with xi+1 = xi − 1.

Case 1.2: di = 3+5xi, action = swap. Then di+1 = −di = −3−5xi = 2−5−5xi = 2−5(xi+1),
so the invariant is maintained with xi+1 = −(xi + 1).

Case 2.1: di = 2+5xi, action = exchange. Then we get di+1 = di−5 = 2+5xi−5 = 2+5(xi−1),
so the invariant is maintained with xi+1 = xi − 1.

Case 2.2: di = 2+5xi, action = swap. Then di+1 = −di = −2−5xi = 3−5−5xi = 3−5(xi+1),
so the invariant is maintained with xi+1 = −(xi + 1).

Note that no integer x satisfies 0 = 2 + 5x or 0 = 3 + 5x, so Invariant 1 implies that the monk
can never reach the state (5, 5) where the difference r− g is zero. It follows that no monk can leave
the monastery.

Extra Credit

Instead of describing the states in the finite state machine of part (a) of Problem 5 using the number
of red and green beads, we can describe them using the quantities s and d defined in parts (a) and
(b) of Problem 5, respectively. This is because the system of equations

s = r + g

d = r − g

has a unique solution r = s+d
2 , g = s−d

2 , so the pair (s, d) uniquely defines a pair (r, g). From now
on, we use s and d to describe the monk’s state.

We saw in part (a) of Problem 5 that the value of s can either stay the same or decrease by
1. The only way it can stay the same is if the monk performs a swap, and in that case d gets
multiplied by −1 by part (b) of Problem 5. For a given state (s, d), the only other state with the
same value of s the monk can reach in his life is, therefore, the state (s,−d). Thus, for each value
of s, the monk can be in at most two different states with that value of s during his life.

12

For each value of s with s ≥ 3, the monk has a chance of performing an exchange unless his
actions in his early days in the monastery prevent him from doing so (for example, he cannot make
an exchange with 2 red beads and 1 green bead). When s gets below 3, the monk can only perform
swaps, and cannot decrease s any further. This means that during his lifetime, the monk can be
in states with at most 27 − 2 + 1 = 26 different values of s, and for each such value he can be in
two different states, for a total of 52 states in his lifetime.

To complete the proof, we demonstrate a sequence of actions the monk can take in order to
reach this maximum number of states. In particular, we show the following.

Lemma 3. For each value of i with 0 ≤ i ≤ 25, the monk can reach the state (27−i, 2) or (27−i, 3)
and visit a total of 2(i+ 1) different states on the way.

Proof of Lemma 3. We argue by induction on i.
The initial state with is (s, d) = (27, 3), which corresponds to the case i = 0. The monk can

perform two swaps to go to state (27,−3) and back to (27, 3). Now the monk is in state (27, 3) and
visited 2 different states, so the base case is proved.

So suppose that for some value of i, the monk can reach either state (27 − i, 2) or (27 − i, 3)
with a total of 2(i+ 1) states visited. There are two cases to consider. In the arguments below, we
define s = 27− i to simplify notation. Note that if s = 2, there is nothing to prove in the induction
step because i has the maximum value of 25 in that case. Thus, we assume s ≥ 3 in the inductive
step.

Case 1: The monk is in state (s, 3). In this case r ≥ 3 because g ≥ 0, d = 3, and r = g + d.
Therefore, the monk can perform an exchange to get to the state (s− 1, 3− 5) = (s− 1,−2). After
that, he performs a swap to reach the state (s− 1, 2). The monk could not have visited the states
(s − 1,−2) and (s − 1, 2) prior to visiting (s, 3) because the value of the first component cannot
increase. Thus, at the point the monk reaches the state (s − 1, 2) = (27 − (i + 1), 2), he visited
2(i+ 1) + 2 = 2(i+ 2) different states.

Case 2: The monk is in state (s, 2). Because we assume s ≥ 3, we have r+ g ≥ 3. Furthermore,
r − g = 2, so the monk must have at least 3 red beads (having 2 red beads would mean he has no
green beads, and a total of only two beads, thus violating s ≥ 3). Then he can perform an exchange
and get to state (s− 1, 2− 5) = (s− 1,−3). After a swap, he reaches the state (s− 1, 3). Since the
value of the first component of the state only decreases, the states (s − 1,−3) and (s − 1, 3) were
visited for the first time, and the monk visited 2(i+ 1) + 2 = 2(i+ 2) states total. This completes
the proof.

By Lemma 3, the monk can reach the state (2, 0). Now 2 = 27− 25, so Lemma 3 also tells us
that he can do this in a way that takes him through 2 · (25 + 1) = 52 different states.

13

