
CS/Math 240: Intro to Discrete Math 5/3/2011

Solutions to Homework 10

Instructor: Dieter van Melkebeek

Problem 1

There were five different languages in Problem 4 of Homework 9.

The Language D0

Recall that D0 is the language of ternary representations of multiples of zero. Strings with leading
zeros are not allowed, and 0 is the only multiple of zero, so D0 = {0}. A corresponding regular
expression is 0.

The Language D1

The only string in D1 that starts with 0 is the string 0 because leading zeros are not allowed.
Since any non-negative integer is a multiple of 1, and since every ternary string starting with a
nonzero symbol is a ternary representation of some integer, any ternary string starting with a
nonzero symbol is in D1. One regular expresison that characterizes all ternary strings starting with
a nonzero symbol is (1 ∪ 2)(0 ∪ 1 ∪ 2)∗. We take the union of this regular expression with 0 to get
a regular expression for the language D1:

0 ∪ (1 ∪ 2)(0 ∪ 1 ∪ 2)∗.

Alternative solution: We can also use the automaton M2 for D1 we described on the previous
homework, and use ideas from Lecture 24 to construct a regular expression that captures all strings
that take M2 to one of its accepting states. For completeness, we show M2 in Figure 1.

sinit s0

s1 sg

0

1, 2 0, 1, 2

0, 1, 2 0, 1, 2

Figure 1: The finite state automaton M2 for the language D1.

The only string that takes M2 from sinit to the accepting state s0 is the string 0. Any other
string that starts with a zero takes M2 from the start state to the garbage state sg.

1

To get to state s1 from the start state, the first symbol of the input must be a 1 or a 2, which
is characterized by the regular expression (1∪ 2). After that, no ternary string can make M2 leave
the state s1, so the regular expression that captures all strings which take M2 from the start state
to the accepting state s1 is (1 ∪ 2)(0 ∪ 1 ∪ 2)∗.

Our final regular expression that characterizes the language D1 is, therefore, 0∪(1∪2)(0∪1∪2)∗.

The Language D2

As was the case for the language D1, the only string in D2 that starts with 0 is the string 0. Any
other string that starts with a zero has other symbols after it, and is, therefore, not in D2.

To find a regular expression that characterizes all strings that start with 1 or 2, we use a
technique from Lecture 24 which we used for deriving regular expressions for the language of
binary strings consisting of an odd number of ones and for the language of binary strings that start
and end with the same symbol. Remember that a nonzero string in D2 contains an even number
of ones.

A nonzero string in D2 can start with 2. After that, it could contain an arbitrary sequence of
zeros and twos, which keeps the number of ones even. After reading a 1, there could be another
sequence of zeros and twos. Finally, after the next 1, the number of ones in the string becomes
even again. This pattern can repeat multiple times and is characterized by the regular expression
((0∪ 2)∗1(0∪ 2)∗1)∗. After the last 1, the string can still contain an arbitrary number of zeros and
twos, which is characterized by the regular expression (0∪ 2)∗. Putting this all together, all strings
in D2 that start with a 2 are captured by the regular expression 2((0 ∪ 2)∗1(0 ∪ 2)∗1)∗(0 ∪ 2)∗.

If the first input symbol is 1, the string can contain an even number of only in the following way.
After the first 1, the string can contain an arbitrary number of zeros and twos. After that, it contains
another 1, which makes the number of ones even for the first time since the first symbol. The regular
expression for this part of the string is 1(0 ∪ 2)∗1. From that point on, the characterization is the
same as in the previous paragraph. Thus, the regular expression that characterizes all strings in
D2 starting with 1 is 1(0 ∪ 2)∗1((0 ∪ 2)∗1(0 ∪ 2)∗1)∗(0 ∪ 2)∗.

Combining all the regular expressions we found, we get a regular expression that characterizes
the language D2.

0 ∪
(

2((0 ∪ 2)∗1(0 ∪ 2)∗1)∗(0 ∪ 2)∗
)

∪
(

1(0 ∪ 2)∗1((0 ∪ 2)∗1(0 ∪ 2)∗1)∗(0 ∪ 2)∗
)

.

Like for the previous language, we can use the automaton M3 for D2 we described on the
previous homework, and construct a regular expression out of it. For completeness, we show the
automaton in Figure 2. The regular expression 0 characterizes all strings that take M3 from state
sinit to the accepting state s0 is the string 0. The regular expressions 2((0∪ 2)∗1(0∪ 2)∗1)∗(0∪ 2)∗

and 1(0∪2)∗1((0∪2)∗1(0∪2)∗1)∗(0∪2)∗ characterize all strings that take M3 from sinit to s′0. The
union of the three regular expressions then gives a regular expression that characterizes all strings
that take M3 from the start state to one of its accepting states.

The Language L1

The language L1 is almost like D2, except it additionally contains the empty string and does not
contain 0. The nonzero nonempty strings in L1 are the same as the same as the nonzero strings in

2

sinit

s′0 s′1

s0 sg

1

1

0, 2 0, 2

0, 1, 2

0, 1, 2

2

1

0

Figure 2: The finite state automaton M3 for the language D2.

D2, and we know a regular expression for those. Since the regular expression for the empty string
is ǫ, we get the following as one possible regular expression for L1:

ǫ ∪
(

2((0 ∪ 2)∗1(0 ∪ 2)∗1)∗(0 ∪ 2)∗
)

∪
(

1(0 ∪ 2)∗1((0 ∪ 2)∗1(0 ∪ 2)∗1)∗(0 ∪ 2)∗
)

.

Alternative solution: We show the automaton M4 for the language L1 = (D2 \ {0}) ∪ {ǫ} in
Figure 3. It looks almost the same as M3, except the state s0 is missing and the start state is now
accepting.

sinit

s′0 s′1

sg

1

1

0, 2 0, 2

0, 1, 2

2

1

0

Figure 3: The finite state automaton M4 for the language L1.

The only way for M4 to end in the accepting initial state is if the input is the empty string.

3

All paths in M4 that lead to the accept state s′0 from the start state are also present in M3, and
there are no additional paths that lead from the start state to s′0, so the regular expression that
captures all strings which take M4 from the start state to the state s′0 is the same as for M3.

Hence, the regular expression that characterizes L1 is

ǫ ∪
(

2((0 ∪ 2)∗1(0 ∪ 2)∗1)∗(0 ∪ 2)∗
)

∪
(

1(0 ∪ 2)∗1((0 ∪ 2)∗1(0 ∪ 2)∗1)∗(0 ∪ 2)∗
)

.

The Language L3

We showed on Homework 9 that L3 = D6, where D6 is the language of all ternary representations
of multiples of 6. We had an alternative characterization of strings in this language, namely that
they contain an even number of ones (so they are multiples of 2), and they end with a zero (so
they are also multiples of 3). Thus, the strings in this language are the string 0 and any string that
starts with a 1 or a 2, ends with a zero, and contains an even number of ones. We know a regular
expression that captures all strings of the latter kind, and we concatenate that regular expression
with zero to get a regular expression that captures the nonzero strings in D6. After that, take the
union with the regular expression 0 to get a regular expression for all of D6.

0 ∪
(

2((0 ∪ 2)∗1(0 ∪ 2)∗1)∗(0 ∪ 2)∗
)

0 ∪
(

1(0 ∪ 2)∗1((0 ∪ 2)∗1(0 ∪ 2)∗1)∗(0 ∪ 2)∗
)

0.

Problem 2

Consider a finite automaton M = (S, Σ, ν, s0, A) that accepts the language L. Using M , we would
like to construct a new finite automaton that accepts all strings in L that have no nontrivial
extension in L. Consider any string x ∈ L. When x is provided as input to M , the machine will
end up in an accepting state S. If a path of positive length exists from S to another accepting state
T (note that S can be equal to T), then the input along the path is a nonempty string y that can
be appended to x to get a nontrivial extension xy of x that belongs to L. So, we would like that
no such path exists between any two accepting states.

In order to fulfill the above constraint, we change the set of accepting states, A, of M to A′

where A′ contains all those states in A from which there is no path of positive length to any other
state in A. The resulting machine, M ′ = (S, Σ, ν, s0, A

′) is a finite automaton, which means that
the language of all strings in L with no nontrivial extensions in L is a regular language.

Problem 3

Part a

We start by creating a state for each equivalence class; these will be denoted [x], where x is any
member of that class (generally, we will use the smallest member, and the first in lexographical
order among members of the same length). For example, the equivalence class which contains the
empty string is denoted [ǫ]. Our goal is to define a set of transitions between these states, such
that for any input x, ν(s0, x) = [x]. Note that by setting z = ǫ in the definition of RL, we have
that each equivalence class of RL either entirely falls within L, or else is disjoint from L. Then, by
making the accepting states all equivalence classes that are in L, we have an automaton ML that
accepts L.

4

We note that for any state [x], ν([x], a) = [xa]; any string in the same equivalence class as
x will lead to the equivalence class containing xa when a is appended. This is because for any
strings x and y that belong to the same equivalence class, we have by the definition of RL that
(∀z)xz ∈ L ⇐⇒ yz ∈ L, which implies that (∀z′)xaz′ ∈ L ⇐⇒ yaz′ ∈ L), which means that
xa and ya belong to the same equivalence class of RL. Setting [ǫ] to be the start state, yield the
desired automaton ML.

Part b

Assume that on an arbitrary finite automaton, for two strings x and y, ν(s0, x) = ν(s0, y). This
means that after processsing x and y, this automaton will be in the same state sk. Any additional
input z from this state will lead to ν(sk, z). So ν(s0, xz) = ν(s0, yz) = ν(sk, z). This final state can
either be accepting or not accepting; either way xz is accepted (and is thus in L) if and only if yz
is accepted. This is our definition for members of the same equivalence class in RL.

Part c

To show that L is regular if and only if the number of equivalence classes of RL is finite, we will
use the result shown in lecture that a language L is regular iff there exists a finite automaton M
that accepts L. If we can show that this occurs if and only if the number of equivalence classes of
RL is finite, we will have proven the original statement due to the transitivity of ’if and only if’.

From our construction in (a), we see that if the number of equivalence classes of RL is finite, it
is possible to create an automaton ML that accepts L where the states of M are the equivalence
classes of RL. Since the number of equivalence classes of RL is finite, the number of states of ML

is as well; so it is possible to create a finite automaton that accepts L.
Now, assume that we have a finite automaton M that accepts L, but the number of equivalence

classes of RL is infinite. This means there is at least one state in M that contains members of two
different equivalence classes of RL (we will denote these x and y). But then, ν(s0, x) = ν(s0, y),
which from (b) we know implies that x and y belong to the same equivalence classes of RL(M).
This is a contradiction; as such, it is not possible for a finite automaton M to accept L and the
number of equivalence classes of RL to be infinite. In other words, if we have a finite automaton
M that accepts L, the number of equivalence classes of RL is finite.

We have shown that there exists a finite automaton M that accepts L if and only if the number
of equivalence classes of RL is finite; this combined with the fact that a language L is regular if
and only if there exists a finite automaton M that accepts L proves our original statement.

To argue that if the number of equivalence classes of RL is finite, the minimum number of
states of any finite automaton accepting L equals the number of equivalence classes of RL, we use
a similar argument to our second direction above. If a finite automaton has less states than the
number of equivalence classes of RL, there are two members of different equivalence classes x and
y in the same state. But then ν(s0, x) = ν(s0, y), a contradiction. So our original statement must
hold. Moreover, the automaton ML from part (a) is an FA accepting L with the allotted number
of states.

5

Part d

We recall that D6 is the set of ternary strings with no leading zeros that represent multiples of 6.
A more useful defintion of this set is that it contains the string 0 and strings with an odd number
of 1s that don’t start with 0 and end with 0.

We now construct equivalence classes of the relation RD6
and use them to design a finite state

automaton for D6. We first handle strings that start with a zero, and then move on to strings that
start with nonzero symbols. For strings that start with a nonzero symbol, we make a distinction
between those that are in D6 and those that are out. As in part (a), the names of the classes will
be [x] where x is some string (generally the shortest one) in its equivalence class.

Strings that start with zero (and the empty string): Before we start, note that for any
string x starting with a 1 or a 2, there exists a string z such that xz ∈ D6. If x has an even number
of ones, let z = 0 and then xz is a string with an even number of ones that ends with zero, which
makes it a string in D6. In fact, if x itself ends with 0, we can just let z = ǫ. Finally, if x contains
an odd number of ones, let z = 10.

On the other hand, no matter what string we append to a string that starts with a zero and has
length at least 2, we end with a string that is out of the language D6 because D6 does not allow
strings with leading zeros. Call the set of all such strings [00], and note that any two strings in
[00] are related by RD6

by the previous sentence. The previous paragraph also implies that strings
starting with 1 or 2 belong to different equivalence classes than strings in [00]. Also note that
0 /∈ [00] because 0 ∈ D6, so 0ǫ ∈ D6 whereas xǫ /∈ D6 for any x ∈ [00]. Finally, ǫ /∈ Bg because
ǫ0 ∈ D6 whereas x0 /∈ D6 for any x ∈ Cg. Thus, Bg is an equivalence class.

Now note that 0 and ǫ are not related by RD6
because 00 /∈ D6 whereas ǫ0 ∈ D6. Thus, they

are in different equivalence classes. We already showed that neither string is in [00], and we now
show that their equivalence classes are singleton sets. If x starts with a 1 or a 2, we can extend it to
a string in D6 by appending 00 or 010 depending on whether x contains an even or an odd number
of ones. Appending either of those strings to ǫ or 0 yields a string with a leading zero, which is not
in D6. Thus, ǫ and 0 are not related by RD6

to any other strings besides themselves, which means
they form singleton equivalence classes under this relation. Call the equivalence classes [ǫ] and [0],
respectively.

Strings that start with 1 or 2: A string that starts with 1 or 2 is in D6 if and only if it
contains an even number of ones and ends with a zero. Let [20] be the set of such strings. Observe
that appending any string z to x ∈ [20] gives us a string with value 3|z|Val (x) + Val (z), which is
divisible by 6 if and only if Val (z) is divisible by 6. This holds for any string x ∈ [20], so all strings
in [20] are related by RD6

. On the other hand, if y /∈ D6, yǫ /∈ D6 whereas xǫ ∈ D6 for any x ∈ [20],
and we showed earlier that 0 is not related to any string in [20], so [20] is actually an equivalence
class.

For the remaining strings that start with a 1 or a 2, we make a distinction between strings with
an even and odd number of 1s. Let [2] be the set of strings that start with a nonzero symbol, have
an even number of ones, and don’t end with a zero. Also let [1] be the set of strings that start with
a nonzero symbol, have an odd number of ones, and end with a zero. Appending 0 to a string in [2]
yields a string with an even number of ones that ends with zero (so it’s in D6), whereas appending
0 to a string in [1] yields a string with an odd number of zeros (which is not in D6). Thus, no
element of [2] is related to any other element of [1], and we know from earlier that no elements
of [2] or [1] are related by RD6

to elements of the other equivalence classes we have found so far.

6

What remains to show is that all elements of [2] are mutually related, and that all elements of [1]
are mutually related.

First consider x ∈ [2], which is a string that ends with a nonzero (otherwise it would be in [20])
and has an even number of 1s. It is not in D6, and x0r is in D6 for any r ≥ 1. Now consider extending
x with a string z that has at least one nonzero symbol in it. We have Val (xz) = 3|z|Val (x)+Val (z).
Since z contains at least one symbol in it and Val (x) is even, 3|z|Val (x) is divisible by 6. Hence,
xz represents a multiple of 6 if and only if Val (z) is a multiple of 6. Hence, z fully determines
whether xz ∈ D6 for any x ∈ [2], so all elements of [2] are related by RD6

, which means that [2]
is an equivalence class. Here we also remark that the strings z that extend strings in [2] to strings
in D6 are actually strings from the language D′

6 that represent multiples of 6 with leading zeros
allowed.

Finally, let x ∈ [1], and consider any string z. Since x contains an odd number of ones, z can
make xz an element of D6 only if it contains an odd number of ones. In that case, consider the first
occurrence of 1 in z, and call the portion of z up to the first 1 z′, and the remainder of the string
z′′. Note that xz′ is now in [2], and, therefore, xz ∈ D6 if and only if z′′ ∈ D′

6 by the previous
paragraph. We see again that z determines whether xz belongs to D6 or not, so all elements in [1]
are related.

Automaton: This completes the construction of equivalence classes for the relation RD6
. We

summarize all equivalence classes in Table 1.

Name Description

[ǫ] ǫ
[0] 0

[00] 0(0 ∪ 1 ∪ 2)(0 ∪ 1 ∪ 2)∗

[1] Strings that don’t start with 0 and have an odd number of ones.
[2] Strings that don’t start with 0, have an even number of ones, and don’t end with 0.

[20] Strings that don’t start with 0, have an even number of ones, and end with 0.

Table 1: Summary of equivalence classes of RD6
.

Our finite state machine for D6 has a single state for each equivalence class defined above. The
transitions for these states follow from the arguments as well. We show the automaton MD6

in
Figure 4. The states are labeled by the name of the equivalence classes.

The class [1] contains all strings starting with a nonzero symbol and containing an odd number
of 1s; [2] contains all strings starting with a nonzero symbol, not ending with 0, and containing an
even number of 1s; and [20] contains all strings starting with a nonzero symbol, ending in 0, and
containing an even number of 1s. We see that, in comparison to the finite state machine for L1 in
Homework 9, this automaton requires only one additional state. This is the state to track whether
a string with an even number of 1s ends in 0 or 1. Since D6 was originally given as L∗

1{0}, this
extension appears reasonable.

In comparison to the finite automaton ML3
in the model solutions for Homework 9, our given

automaton has condensed the information represented in the previous solution to keep only what is
necessary. Essentially, the information held in the state sets {s′1, s

′
3, s

′
1} and {s′2, s

′
4} is redundant;

the former are states with an odd number of 1s, and the latter states with an even number of 1s
that end in 0.

7

[ǫ]start [0] [00]

[1] [20]

[2]

0 0, 1, 2

0, 1, 2

1

2

11
0

0, 2

2

0

1, 2

Figure 4: The finite state automaton MD6
.

Problem 4

We start by recalling our result from problem 3; namely, that the minimum number of states of
any finite automaton accepting L equals the number of equivalence classes of RL.

To determine these equivalence classes, consider two arbitrary input strings, x and y. Let us say
that x contains the symbol i while y does not. Treating x and y as substrings of a larger input, we
see that if we append x or y with a string z that contains all symbols but i, xz should be rejected
by a finite automaton while yz should be accepted. This is not possible if the inputs x and y belong
to the same equivalence class.

On the other hand, if x and y contain the same subset of symbols, we note that it is the case
that (∀z)xz ∈ L ⇐⇒ yz ∈ L. We can thus express an equivalence class of RL by the symbols
present and absent in each of the members of that class. For example, all the strings containing
only the symbol 1 will be in the same equivalence class (since they will only not be in L when
appended with a string containing all other symbols).

The information about what symbols a string contains can be captured using a bit string of
length k, where the bit xi = 1 indictates the presence of a symbol i in the string (likewise, xi = 0
indicates its absence). We see immediately that there are 2k possible such bit strings. So there are
2k equivalence classes of RL, and the minimum number of states of any finite automaton accepting
L equals 2k.

For a nondeterministic finite automaton, we recall from our definition that an NFA accepts a
given string if and only if there exists a path on the NFA leading to an accepting state. To make
a NFA that accepts the language of all strings that does not contain a specific symbol i in the
alphabet, then, we can simply exclude any transitions on the input i. Such a NFA would look as
follows:

However, this does not quite give us what we desire. We should accept some strings that contain
the symbol i; but only those which do not contain some other symbol. By combining k separate
states, s1, s2, ..., sk, which match the format specified above, we can capture all strings that do not
contain every single symbol from 1....k. To connect these states, we need an initial state that leads

8

sinitstart

1, 2....i − 1, i + 1, ...k

Figure 5: The finite state automaton M1 for the language {x |x does not contain i}}.

to each of these k states. Such an automaton would look as follows:

sinitstart s2

s1

sk

2, ...k

1, 3, ...

1, 2....k − 1

2, ...k

1, 3, ...

1, 2....k − 1

Figure 6: The finite state automaton M2 for the language {x|x does not contain all of {1, 2, ...k}.

Problem 5

Let’s start with some examples. Consider the regular expression R = aa∗ ∪ ab∗. The languages
L(aa∗) and L(ab∗) are not disjoint. Both of them contain the string a. We can modify R to get
another regular expression R′ = aa∗∪abb∗ such that the languages L(aa∗) and L(abb∗) are disjoint.
One can verify that L(R) = L(R′).

The second example that we have is more involved. Consider the regular expression R =
R1 ∪ R2 = a∗b∗a ∪ ab∗a∗. The languages generated by R1 and R2 have many more strings in
common than the earlier example. Let’s work out a regular expression R′ such that L(R) = L(R′)
but all the unions appearing in R′ are amongst disjoint regular expressions. Further, let’s keep R1

unchanged. Then, we need to suitably modify R2 so that it does not generate strings represented
by R1. The strings generated from R2 with no contribution from b∗ are also contained in L(R1).
So, b∗ should contribute at least one b. So we now need to modify the expression R′

2 = abb∗a∗.
We can divide R′

2 into disjoint sub expressions – R′
2 = abb∗ ∪ abb∗aa∗. In the first expression a∗

does not contribute any characters. The strings generated by it are not in L(R1) since all strings
in L(R1) end with an a. The strings generated by the second expression in R′

2 can be generated
using R1 if a∗ does contribute any characters. Hence, we add another a to the expression to get
R′

2 = abb∗ ∪ abb∗aaa∗. Hence, R′ = R1 ∪ R′
2 = a∗b∗a ∪ abb∗ ∪ abb∗aaa∗.

From the examples discussed above, it seems that it is always possible to rewrite a regular

9

expression such that all unions involved are disjoint. In order to prove this conjecture, induction is
a possible candidate strategy. In this case, it is tricky to set up the induction scheme. The problem is
the choice of the induction parameter. The standard choice as suggested by the recursive definition
of a regular expression, namely the number of regular operations in the expression, does not work.
It is possible to get induction to work but there is a nicer approach.

In class, we saw constructions to go from a regular expression R to a finite automaton M such
that L(M) = L(R), and vice versa. Given a regular expression R, applying the first construction,
and then the second, yields a regular expression R′ that is equivalent to R, i.e., L(R) = L(R′). R′

will typically be much more complicated than R but it (almost) has the disjointness property we
want. The reason for the latter is that R′ is constructed by breaking up the strings in L(M) based
on the type of path they induce in the automaton M .

It turns out we need a minor modification to the construction from class. Let us label the
states of M as 1, 2, . . . , |S| as before. We now construct regular expressions Ri,j,k that describe all
nonempty strings that lead M from state i to state j using only states with labels at most k as
intermediate states. The minor difference with the construction from class is that we discard the
empty string.

As before, we construct the expressions Ri,j,k inductively. The base cases Ri,j,0 now either
consist of a single alphabet symbol, or are empty. The induction step

Ri,j,k+1 = Ri,j,k ∪ Ri,k+1,k(Rk+1,k+1,k)
∗Rk+1,j,k

still holds (verify this yourself!). The union involved is disjoint because the first term corresponds
to paths from i to j that only use states up to k as intermediate states, and the second term to
paths from i to j that use state k + 1 and no state higher than k + 1 as an intermediate state.
The nonempty strings in L(M) are described by the regular expression ∪s∈ARs0,s,|S|, which is a
disjoint union because each term corresponds to paths that start from the same state s0 but end
in different states s. Finally, we include the empty string if needed using one more disjoint union.

As an exercise, you should convince yourself that we do need to exclude the empty string from
the sets Rijk to realize our goal.

Extra Credit

We make use of the tools developed in Problem 3. There, we constructed an automaton with six
states for the language D6 using equivalence classes of the relation RD6

in part (d) of Problem 3.
Now we describe the equivalence classes of RDk

for any k. The number of equivalence classes gives
us a lower bound on the number of states a finite automaton that recognizes Dk must have by part
(c) of Problem 3.

Write k = 3ℓ · m where 3 does not divide m. Let x = xnxn−1 . . . x1x0 be a ternary string, and
let the integer value corresponding to the string x be

Val (x) =

n
∑

i=0

xi3
i. (1)

First observe that the terms in (1) with i ≥ ℓ are all divisible by 3ℓ, and that the sum
∑ℓ−1

i=0 xi3
i

is divisible by 3ℓ if and only if xi = 0 for all i ∈ {0, . . . , ℓ − 1} (this is because the largest this sum

10

can be is 3ℓ − 1 when all the xi are equal to 2; you can prove this by induction). It follows that the
ternary representation of every nonzero integer that is a multiple of k ends with ℓ zeros.

Second, suppose Val (x) is a multiple of k, so it has the form y0ℓ. Note that Val (x) = kq = 3ℓmq,
so Val (x) /3ℓ = mq, which is divisible by m. Also, Val (y) =

∑n
i=ℓ xi3

i−ℓ, and x0 through xℓ−1 are
all zero, so

Val (x)

3ℓ
=

∑n
i=0 xi3

i

3ℓ
=

n
∑

i=ℓ

xi3
i−ℓ = Val (y) .

It follows that y ∈ Dm. Since x was an arbitrary string in Dk, it follows that every string in Dk

except for the string 0 is a concatenation of a string in Dm with a string of ℓ zeros.
Finally, the converse of the last two paragraphs also holds. If Val (x) is divisible by m, so

is 3ℓVal (x), and the ternary representation of this number is the string x followed by ℓ zeros.
Thus, we have shown that a string that is not zero represents a multiple of k if and only if it is a
concatenation of a string that represents a multiple of m with a string of ℓ zeros.

Now let’s describe the equivalence classes of the relation RDk
using the observations we’ve made.

We summarize them in Table 2. The strings in Ci represent all possible multiples of m, and are
separated into ℓ+1 categories depending on the number of zeros they have at the end. The strings
in C ′

i represent numbers that either aren’t multiples of m (when i > 0), or that are multiples of m
(when i = 0) but don’t end with a zero.

There are a total of 3 + ℓ + m classes and they form a partition of the set of all ternary strings.
Also observe that Dk = [0] ∪ Cℓ and Dm =

⋃ℓ
i=0 Ci.

Name Description

[ǫ] ǫ
[0] 0

[00] 0(0 ∪ 1 ∪ 2)(0 ∪ 1 ∪ 2)∗

For i ∈ {0, . . . , ℓ − 1}: Ci Strings in Dm that don’t start with 0 and end with exactly i zeros.
Cℓ Strings in Dm that don’t start with 0 and end with at least ℓ zeros.
C ′

0 Same as C0. Not a new class; defined only for convenience
For i ∈ {1, . . . , m − 1}: C ′

i Strings x that don’t start with 0 and with Val (x) mod m = i

Table 2: The equivalence classes for the relation RDk
.

We need to show that it is possible to extend any string that starts with a 1 or a 2 to a
string that belongs to Dk. Suppose x is one such string. We construct a ternary string of length
⌈log3(m)⌉ that does the job. If z has Val (z) ∈ {0, . . . , m − 1}. Thus, one possibility for z yields
a string xz such that Val (xz) mod m = 0, and xz ∈ Dm. In particular, we can pick z so that
Val (z) = m− (3⌈log3

(m)⌉Val (x) mod m). Also observe that now we can concatenate xz with ℓ zeros
to get a string in Dk.

We now show that two elements of any given class are related by RDk
. This is obvious for the

classes [ǫ] and [0] since they only contain one element each. Any string with a leading zero followed
by at least one more digit is not in the language, so no matter how we extend it, we cannot get a
string in Dk. Thus, all pairs of elements of [00] are also related by RDk

.

Now consider two strings x, y ∈ Ci where i ∈ {0, . . . , ℓ}. There are two cases to consider.

11

Case 1: z consists only of zeros. Then the strings xz and yz are both strings in Dm that end
with i + |z| zeros, and note that the number of trailing zeros in a string in Dm determines whether
it is in Dk or not. Thus, for all such strings z, xz ∈ Dk ⇐⇒ yz ∈ Dk.

Case 2: z contains at least one nonzero symbol. Say z = 0rz′ where the first symbol of z′

is nonzero. Then the strings x′ = x0r and y′ = y0r satisfy xz = x′z′ and yz = y′z′, and also
x′, y′ ∈ Dm because Val (x′) = 3rVal (x), so it’s a multiple of m because Val (x) is. The same holds
for y′.

We now make two observations about z′ in this case. Since x′, y′ ∈ Dm, m divides both Val (x′)
and Val (y′), and also 3|z

′|Val (x′) and 3|z
′|Val (y′). We also have Val (x′z′) = 3|z

′|Val (x′) + Val (z′)
and Val (x′z′) = 3|z

′|Val (x′) + Val (z′), so m divides Val (x′z′) and Val (y′z′) if and only if Val (z′)
is a multiple of m, or, in other words, if z′ ∈ Dm. Also, since z′ starts with a nonzero symbol, the
number of zeros at the end of z′ determines whether x′z′ and y′z′ belong to Dk. Thus,

xz ∈ Dk ⇐⇒ x′z′ ∈ Dk ⇐⇒ z′ ∈ Dk ⇐⇒ y′z′ ∈ Dk ⇐⇒ yz ∈ Dk,

and we see that any two elements in Ci are related by RDk
.

Now suppose x, y ∈ C ′
i where i ∈ {1, . . . , m − 1}, and consider any string z. Recall that

Val (x) mod m = i and Val (y) mod m = i. We have Val (xz) = 3|z|Val (x) + Val (z) and Val (yz) =
3|z|Val (y) + Val (z), and this equality also holds modulo m. Thus, xz ∈ Dm ⇐⇒ yz ∈ Dm.
Also note that z contains at least one nonzero symbol in it when xa ∈ Dm because otherwise
concatenating x with z would yield an integer of the form 3rVal (x) which is not divisible by m
because Val (x) is not divisible by m and 3 does not divide m. Thus, we only get xz ∈ Dk if z
ends with ℓ zeros, and in that case we also have yz ∈ Dk. It follows that any two strings in C ′

i are
related by RDk

.

Finally, we need to show that the partition classes we described are actually equivalence classes.
That is, we show that no two elements of different partition classes are related by RDk

.
We argued in the solution to part (d) of Problem 3 that [ǫ], [0], and [00] are equivalence classes.

The same argument applies here.
Next, consider two classes Ci and Cj with 0 ≤ i < j ≤ ℓ. Let x ∈ Ci and y ∈ Cj , and let

z = 0ℓ−j . Then xz /∈ Cℓ whereas yz ∈ Cℓ, so xz /∈ Dk whereas yz ∈ Dk. It follows that x and y are
not related by RDk

.
Now consider classes Ci and C ′

j where i ∈ {0, . . . , ℓ} and j ∈ {1, . . . , m− 1}, and let x ∈ Ci and

y ∈ C ′
j . Pick z = 0ℓ−i, and note xz ∈ Cℓ whereas yz /∈ Dm for some r ∈ {1, . . . , m − 1}. It follows

that xz ∈ Dk whereas yz /∈ Dk, and that x and y are not related by RDk
. So now we know that

the classes Ci for i ∈ {0, . . . , ℓ} are also equivalence classes.
Finally, consider classes C ′

i and C ′
j with 1 ≤ i < j ≤ m − 1. Let x ∈ C ′

i and y ∈ C ′
j . By

definition, we have Val (x) mod m 6= Val (y) mod m. We can extend any string that starts with a
nonzero symbol into a string that represents a multiple of m, so pick z such that xz ∈ Dm. Since
multiplication by a constant relatively prime to m as well as addition of any integer are injective
functions on the set of integers modulo m, we get yz /∈ Dm. Now concatenate both these strings
with ℓ zeros to get xz0ℓ ∈ Dk and yz0ℓ /∈ Dk, thus showing that x and y are not realted.

It now follows by part (c) of Problem 3 that the minimum number of states needed by a finite
state automaton that decides Dk is ℓ + m + 3 where k = 3ℓ · m and 3 does not divide m.

Also note the following correspondence between our equivalence classes and the classes from
part (d) of Problem 3: [1] = C ′

1, [2] = C ′
0 = C0, and [20] = C1.

12

