
CS/Math 240: Intro to Discrete Math 5/5/2011

Solutions to Homework 11

Instructor: Dieter van Melkebeek

Problem 1

Part (a)

There is a bijection with sequences of the form:

(value of pair, suits of pair, value of other three cards, suits of other three cards).

Thus, the number of hands with a single pair is:

13 ·
(

4

2

)

·
(

12

3

)

· 43 = 1, 098, 240.

Alternatively, there is also a 3!-to-1 mapping to the tuple:

(value of pair, suits of pair,
value 3rd card, suit 3rd card, value 4th card, suit 4th card, value 5th card, suit 5th card).

Thus, the number of hands with a single pair is:

13 ·
(

4
2

)

· 12 · 4 · 11 · 4 · 10 · 4
3!

= 1, 098, 240.

Part (b)

This is the set of all hands minus the hands with either no kings or one king:

(

52

5

)

−
(

48

5

)

− 4 ·
(

48

4

)

= 108, 336.

Alternatively, this is also the set of all hands of two, three, or four kings:

(

48

3

)(

4

2

)

+

(

48

2

)(

4

3

)

+

(

48

1

)(

4

4

)

= 108, 336.

Part (c)

There are
(

51
4

)

hands containing the ace of spades, an equal number containing the ace of clubs and
(

50
3

)

containing both. By the inclusion-exclusion formula, the hands containing one or the other or
both, equals

(

51

4

)

+

(

51

4

)

−
(

50

3

)

= 480, 200.
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Part (d)

There is a bijection from the solutions of the equation to the binary strings containing n zeros and
k ones, where x0 is the number of 0s preceding the first 1, xk is the number of 0s following the last
1, and xi is the number of 0s between the ith and (i + 1)st 1 for 0 < i < k. Thus, the number of
solutions is

(

n + k

k

)

.

Part (e)

There is a bijection from the solutions of

k
∑

i=0

xi ≤ n

where each xi, 0 ≤ i ≤ k, is a nonnegative integer, to the solutions of

k+1
∑

i=0

xi = n,

where each xi, 0 ≤ i ≤ k + 1, is a nonnegative integer, namely the mapping

(x0, x1, . . . , xk) → (x0, x1, . . . , xk, n −
k

∑

i=0

xi).

Therefore, by part (d), the number of solutions is

(

n + k + 1

k + 1

)

.

Part (f)

Pair up students by the following procedure. Line up the students and pair the first and second, the
third and fourth, the fifth and sixth, etc. The students can be lined up in (2n)! ways. However, this
overcounts by a factor of 2n, because we would get the same pairing if the first and second students
were swapped, the third and fourth were swapped, etc. Furthermore, we are still overcounting by
a factor of n!, because we would get the same pairing even if pairs of students were permuted, e.g.,
the first and second were swapped with the ninth and tenth. Therefore, the number of pairings is:

(2n)!

n! · 2n
.

Part (g)

There are
(

n
2

)

potential edges between distinct vertices and n selfloops, each of which may or may
not appear in a given simple graph. Therefore, the number of simple undirected graphs on the
vertex set {1, 2, . . . , n} is

2(n

2
)+n.
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Problem 2

Part (a)

Lets first work on counting the permutations of {1, 2, . . . , n} that are not derangements. Let us
denote that set by S. Let Si be the set of all permutations (x1, x2, . . . , xn) of the set {1, 2, . . . , n}
such that xi = i. Then S = ∪n

i=1Si.
By the inclusion-exclusion principle, we have that

|S| =
∑

∅6=I⊆[n]

(−1)|I|+1| ∩i∈I Ii| (1)

=
∑

i

|Si| −
∑

i,j

|Si ∩ Sj | +
∑

i,j,k

|Si ∩ Sj ∩ Sk| − . . . + (−1)n+1|S1 ∩ S2 ∩ . . . ∩ Sn|,

where in each summation of the latter formula, the subscripts are distinct elements of {1, 2, . . . , n}.
What is |Si|? There is a bijection between permutations of {1, 2, . . . , n} with i in the ith position

and unrestricted permutations of {1, 2, . . . , n} − {i}. Therefore, |Si| = (n − 1)!.
How about |Si ∩ Sj | where i and j are distinct? The set Si ∩ Sj consists of all permutations

with i in the ith position and j in the jth position. Thus, there is a bijection with permutations of
{1, 2, . . . , n} − {i, j}, and so |Si ∩ Sj | = (n − 2)!.

More generally, if i1, i2, . . . , ik are all distinct, then the same argument gives that |Si1 ∩ Si2 ∩
. . . ∩ Sik | = (n − k)!. In (1) there is one such term for each k-element subset of the n-element set
{1, 2, . . . , n}, i.e., there are

(

n
k

)

such terms. Thus, (1) becomes

|S| =
n

∑

k=1

(−1)k+1

(

n

k

)

(n − k)! = n! ·
n

∑

k=1

(−1)k+1/k!.

Thus, the number of derangements of length n equals

n! − |S| = n! ·
n

∑

k=0

(−1)k/k!. (2)

Part (b)

Since there are n! permutations of length n, by (2) the fraction of permutations of length n that
are derangements equals

∑n
k=0(−1)k/k!. Since ex =

∑∞
k=0 xk/k!, the fraction converges to ex for

x = −1, i.e., the fraction is asymptotically equivalent to 1/e.

Problem 3

Partition the n × n square into n2 unit squares. Each of the n2 + 1 points lies in one of these n2

unit squares. (If a point lies on the boundary between squares, assign it to a square arbitrarily.)
Therefore, by the pigeonhole principle, there exist two points in the same unit square. And the
distance between those two points can be at most

√
2.
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Problem 4

Let S denotes the set of all length-n sequences of 0’s, 1’s and a single *.
Let P = {0, . . . , n − 1} × {0, 1}n−1. On the one hand, there is a bijection from P to S by

mapping (k, x) to the word obtained by inserting a * just after the kth bit in the length-(n − 1)
binary word, x. So

|S| = |P | = n2n−1 (3)

by the product rule.
On the other hand, every sequence in S contains between 1 and n nonzero entries since the ∗,

at least, is nonzero. The mapping from a sequence in S with exactly k nonzero entries to a pair
consisting of the set of positions of the nonzero entries and the position of the * among these entries
is a bijection, and the number of such pairs is

(

n
k

)

k by the generalized product rule. Thus, by the
sum rule:

|S| =
n

∑

k=1

k

(

n

k

)

Equating this expression and the expression (3) for |S| proves the identity.
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