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Lecture 4 : Sets
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DRAFT

Last time we discussed how to precisely express statements using propositions and predicates.
We mentioned there was a connection between predicates and sets in the sense that the elements
of the domain for which the predicate holds form a set. Today we discuss sets in greater detail as
they are the building blocks for other concepts such as relations, functions, and graphs.

4.1 Sets

We start by defining what a set is.

Definition 4.1. A set is a collection of elements from some domain. A set must be well-defined,
which means that for every element of the domain, we can tell whether it belongs to the set or not.

Let A be a set. We use the notation x ∈ A to mean that x is an element of A. When x is not
an element of the set A, we write x /∈ A.

The next definition captures the notion of containment.

Definition 4.2. If all elements of some set A also belong to another set B, we say that A is a

subset of B. Furthermore, if B contains some element that is not in A, we say that A is a strict
subset of B.

We write A ⊆ B to mean that A is a subset of B, and use A ⊂ B to say that the containment is
strict. Notice that the set containment symbols ⊆ and ⊂ resemble the inequality symbols ≤ and <.
This is not a coincidence. Both of these symbols express that one object is, in some sense, “smaller”
than some other object. Saying A ⊂ B means that A is “less than” B in terms of containment.

When we list elements of a set, the order in which we list them does not matter. Thus, the set
B = {true, false} is the same as the set {false, true}. If order does not matter, we use curly braces
when listing the elements. We will use other notation to indicate that order of elements in some
collection matters.

Sometimes the set has too many elements for us to list them all. In most cases, the set has
some defining property. For example, to describe the set A of all positive integers between 100 and
1000 inclusive, we could write A = {x ∈ N | 100 ≤ x ≤ 1000} or A = {x | x ∈ N∧ 100 ≤ x ≤ 1000}.
The part of such definition before the | symbol tells us what an element is called, and the part after
the | symbol tells us what properties this element must have in order to be in the set. Some ways
to read the | symbol is “such that” or “having the property that”. For example, we could read our
description of A as “the set of integers x such that 100 ≤ x ≤ 1000.”

The sets A and B we just defined are examples of a finite sets. A finite set contains a finite
number of elements, which means that we can write them all down, given enough time.

Let’s now write the set B, which is sometimes called the Boolean domain, in two different
ways. This may sound redundant, but it is often convenient to represent the elements in different
ways. One instance where multiple representations of sets are helpful is when we want to express
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operations on their elements in a different way. For example, suppose we represent the Boolean
domain using the set B′ = {0, 1} where 0 means false and 1 means true. The conjunction operator
∧ on elements of B corresponds to multiplication of elements of B′. Yet another way to represent
B is as B′′ = {−1, 1} where −1 represents true and 1 represents false. Multiplication of elements
of B′ now corresponds to exclusive or, which captures the notion that exactly one of two values is
true. Thus, an exclusive or is different from the or we used earlier because an or of two values is
true even if they are both true.

Very often, we are interested in counting how many elements a set has. For example, we counted
the number of possible paths through a graph when analyzing the complexity of the thread method
for solving mazes. If P is the set of all possible paths through a maze, then we were asking how
many elements were in the set P .

Definition 4.3. The cardinality of a set S is the number of distinct elements in S.

We use the notation |S| to denote the cardinality of a set S.
For example, the cardinality of the Boolean domain B defined earlier is 2 because B has two

distinct elements, true and false. Similarly, we have |B′| = |B′′| = 2.
It may also happen that a set has no elements. If this is the case, we call it an empty set, and

use the symbol ∅ to denote it. Note that |∅| = 0.

4.1.1 Countable Sets

We said at the beginning of this course that discrete structures were the opposite of continuous.
We also mentioned that we could somehow say that something is the first element, something is
the second element, and so on. We now make this notion more precise.

Definition 4.4. A set is countable if there is an enumeration consisting exactly of all elements of

A. Every element of A appears at some point in this enumeration, and no element outside of A
appears in it.

Think of an enumeration as a possibly infinite list of elements of A. This is probably best
explained on examples.

Example 4.1: Every finite set is countable. For example, one enumeration of the set B =
{true, false} is: true, false. Another enumeration is: false, true. The properties of an enumer-
ation are satisfied. Every element of B appeared in both of our enumerations, and no elements
outside of B appeared in them. ⊠

Example 4.2: The natural numbers N = {0, 1, 2, . . .} are countable. Note that the natural numbers
are not a finite set, which shows that countable sets are not limited to finite sets. One enumeration
of the natural numbers is 0, 1, 2, 3, . . . . Notice that number i appears in the (i+ 1)-th position in
the enumeration, and, conversely, the i-th position in the enumeration is i − 1 which is a natural
number. Thus, all natural numbers are listed in the enumeration, and no other elements are. It
follows that the natural numbers are a countable set. ⊠

Here we should warn the reader that one should be careful when using ellipsis (. . . ) as part of
a description of a list. It is important that the use of ellipsis is unambiguous and allows for only
one logical way of continuing the sequence. Another problem with ellipsis is if we use them at the
beginning of a list, as is illustrated in the next example.

Example 4.3: The integers Z = {. . . ,−2,−1, 0, 1, 2, . . .} are countable. A first attempt at an
enumeration would be to start by listing the smallest elements first and then keep adding one like
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we did with the natural numbers. Unfortunately, the integers have no smallest element, so we
would not know where to start such an enumeration. Instead, we use the enumeration 0, 1, −1, 2,
−2, . . . . We leave the proof that this is a valid enumeration to the reader. Like in the previous
example, it suffices to find the expression for the i-th element of the list, and to find the position
of the integer i in the list. ⊠

Even in the example above, we used some kind of a “natural ordering” in the sense that we
first listed zero, then one and its inverse, then two and its inverse, and so on. We may be tempted
to try an ordering like that for rational numbers, i.e., the set Q = {a/b | a ∈ Z ∧ b ∈ N ∧ b 6= 0}.
Unfortunately, this is not going to work because for any rational numbers x and y, there is a rational
number between them. When this is true for some set, we say that the set is dense. For example,
(x + y)/2 is a rational number, and x < (x + y)/2 < y, so the rational numbers are dense. Thus,
we cannot hope to enumerate all rational numbers in any sort of “natural ordering”. This may
lead us to believe that rational numbers are not countable. However, the next proposition tells us
otherwise.

Proposition 4.5. The set of rational numbers is countable.

Proof. We write the rational numbers in a table. Some table entries may represent the same
number, but that is not a problem. Recall that a rational number has the form a/b where a ∈ Z,
b ∈ N, and b 6= 0. Our table has one row for each possible value of a, and one column for each
possible value of b. We use the enumeration of integers to decide which order the rows of our table
come in because we need to be able to argue that every integer gets a row in our table. The entry
corresponding to a’s row and b’s column is a/b. We show part of the table as Table 4.1a.

a \ b 1 2 3 4 · · ·

0 0 0 0 0 · · ·
1 1 1/2 1/3 1/4 · · ·
−1 −1 −1/2 −1/3 −1/4 · · ·
2 2 1 2/3 1/2 · · ·
...

...
...

...
...

. . .

(a) Part of the table we use for enumerating all ra-
tional numbers. The rows correspond to integers,
and the columns correspond to positive integers.

a \ b 1 2 3 4 · · ·

0 1 2 4 7 · · ·
1 3 5 8 12 · · ·
−1 6 9 13 · · ·
2 10 14 · · ·
...

...
...

...
...

. . .

(b) The order in which we traverse Ta-
ble 4.1a in an attempt to enumerate all
rational numbers.

Table 4.1: Enumerating all rational numbers

Observe that every entry in the table is a rational number because only integers are present
as row labels, and only positive integers are present as column labels. Now consider any a/b ∈ Q.
Since we have used our earlier enumerations of integers and of positive integers, there is a row of
the table labeled with a and a column labeled with b. The corresponding table entry is a/b. Since
a/b was an arbitrary rational number, it follows that every rational number is present somewhere
in our table.

If we argue that we can traverse our table in a way that eventually visits every table entry, we
will have demonstrated an enumeration of the rational numbers. The i-th entry in our enumeration
will be the i-th distinct rational number we visit during our traversal of the table. We cannot
traverse our table row by row or column by column because both rows and columns have infinite
length. Instead, we choose to traverse the table diagonal by diagonal, where our diagonals go in
the “southwest” direction. We show the first few steps of our traversal in Table 4.1b.
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Traversing Table 4.1a as shown in Table 4.1b gives us the following list of rationals:

0, 0, 1, 0,
1

2
,−1, 0,

1

3
,−

1

2
, 2, . . . ,

and we drop all duplicates to get

0, 1,
1

2
,−1,

1

3
,−

1

2
, . . .

as our enumeration of the rational numbers.

Proposition 4.5 may give us hope that we could somehow enumerate the real numbers as well.
Unfortunately, this is not possible. We do not give the proof right now. At the end of this lecture,
we will give a more general argument which, when modified appropriately, proves that the real
numbers are not countable.

4.1.2 A Remark about Being Well-defined

We conclude the section on sets about with a remark about self-referential statements along the
line of the sentence “This sentence is not true,” which we introduced in lecture 2. Consider the
collection S = {A | A 6⊆ A}, that is, the collection of sets that do not contain themselves. Is S ∈ S?
The truth of the statement S ⊆ S is actually not defined, which means that we cannot tell whether
S ∈ S, so S is not well-defined. This is known as Russel’s paradox.

4.2 Operations on Sets

We would like to take old sets and make new sets out of them. For example, suppose you have
three sets of students stored somewhere in a database.

• U : The set of all students at UW-Madison

• E1: The set of all students enrolled in CS/Math 240

• E2: The set of all students enrolled in CS 367

Now you would like to find all members of other sets, an operation that is commonly done in
databases.

• S1: Students who are taking at least one of CS/Math 240 and CS 367

• S2: Students who are taking both CS/Math 240 and CS 367

• S3: Students who are not taking CS 367

• S4: Students who are taking CS/Math 240 but not CS 367

In the language of mathematics, we construct these new sets using Boolean operators similar to
the ones we used to make new propositions from old. To get this information out of a database, we
would use a query language such as SQL, and construct database queries from our mathematical
descriptions of the sets we are interested in.
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4.2.1 Boolean Operations on Sets

First let’s describe the set S1 of students who are taking at least one of CS/Math 240 and CS
367. This set contains all elements of E1 and all elements of E2. We say that S1 is the union

of the sets E1 and E2, and write S1 = E1 ∪ E2. Using set notation developed earlier, we define
E1 ∪ E2 = {x | x ∈ E1 ∨ x ∈ E2}. Note the similarity between the union operator ∪ and the
disjunction operator ∨. In fact, we are using ∨ in the definition of the union E1 ∪ E2.

Now let’s describe the set S2 of students who are taking both CS/Math 240 and CS 367. This
set contains only those elements of E1 that are also in E2. We say that S2 is the intersection

of the sets E1 and E2, and write S2 = E1 ∩ E2. We define the intersection of the two sets by
E1 ∩ E2 = {x | x ∈ E1 ∧ x ∈ E2}. Again, note the similarity between the intersection operator ∩
and the conjunction operator ∧.

We can use Venn diagrams as a convenient way to describe various new sets made out of old
sets. We can view these diagrams as the set analog of truth tables for propositions. A Venn diagram
consists of multiple closed curves whose insides overlap. We label each closed curve with the name
of some set. The inside of the closed curve represents all the elements of the corresponding set,
and the outside represents elements that are not members of the set. In Figure 4.1, the set S1 is
represented by the combination of regions (1), (2) and (3), and the set S2 is represented by region
(2). Elements in region (4) don’t belong to either E1 or E2.

(4)

(2) (3)(1)

E2E1

Figure 4.1: Venn diagrams

Venn diagrams are convenient, but become way too messy when more than three sets are
involved. However, they are useful when fewer sets are involved. For example, we could use Venn
diagrams to prove the distributive law for the union and intersection operators.

Proposition 4.6. Let A, B, and C be sets. Then

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C). (4.1)

Proof. We draw a Venn diagram for both the left-hand side and the right-hand side of (4.1) and
see that both sides define the same part of the diagram. The Venn diagrams are in Figure 4.2.

In Figure 4.2a, the area shaded with both kinds of shading is A ∩ (B ∪ C). In Figure 4.2b,
the area with any shading is (A ∩ B) ∪ (A ∩ C). We see that the area shaded with both kinds of
shading in Figure 4.2a is the same as the area shaded with some kind of shading in Figure 4.2b,
which means that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Another way to prove Proposition 4.6 is to show that the statements x ∈ A ∧ (x ∈ B ∨ x ∈ C)
and (x ∈ A∧ x ∈ B)∨ (x ∈ A∨ x ∈ C) are logically equivalent. In fact, even more is true. For any
propositions P , Q and R, the statements P ∧ (Q∨R) and (P ∧Q)∨ (P ∧R) are logically equivalent.
This is known as the distributive law for the ∧ and ∨ operators. Viewed differently, our proof of
Proposition 4.6 actually proves that distributive law as well.
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A B

C

A

B ∪ C

(a) The region shaded with both kinds of shad-
ing is A ∩ (B ∪ C)

A B

C

A ∩B

A ∩ C

(b) The region shaded with at least one kind
of shading is (A ∩B) ∪ (A ∩ C).

Figure 4.2: Diagram for the proof of the distributive law for union and intersection.

Let’s return to the four sets from the last section. We are now interested in the set of students
who are not taking CS 367. This set contains all elements of U that are not in E2. We say that
the set S3 is the complement of E2 in U , and write S3 = E2. Using set notation, we would write
E2 = {x | x /∈ E2}.

When we talk about complements, we usually have a particular domain in mind. In our case,
the domain is the set of all students at UW-Madison, i.e., the set U . Thus, to be more precise, we
should define the complement of E2 as E2 = {x | x /∈ E2 ∧ x ∈ U}. This means that if Bob studies
at UW-Whitewater, he is not in S3 even though he is not enrolled in CS 367. It is common to omit
the domain when it is understood from context. For example, one could just say that S3 is the
complement of E2.

Finally, let’s describe the set of students who are taking CS/Math 240 but not CS 367. Such
students belong to E1 but not to E2. We call the set of such students the set difference of E1 and
E2, and write S4 = E1 − E2. Using our set notation, we have E1 − E2 = {x | x ∈ E1 ∧ x /∈ E2}.

Note that we can describe the complement of a set using set difference. For example, S3 =
U − E2.

4.2.2 Power Sets

Another way to create more sets is to take a set and look at its subsets. The set of all subsets of
a set A is called the power set of A, and we denote it P(A). This is a set containing every single
subset of A, so P(A) is a set of sets. Formally, we define P(A) = {S | S ⊆ A}. This may be
confusing at first, but we can list subsets just like we can list elements, so there is nothing new
here. Let’s see an example.

Example 4.4: Consider the set B′ = {0, 1} from earlier. Its subsets are the empty set ∅, the
singleton sets {0} and {1}, and the set {0, 1}. Thus, P(B′) =

{

∅, {0}, {1}, {0, 1}
}

. ⊠
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As we mentioned earlier, we often want to count how many elements a particular set has. Let’s
do this for the power set. The set P({0, 1, 2}) has cardinality 23 = 8. To see this, note that {0, 1, 2}
has three elements. For each element, we can choose independently whether to place it in a subset
or not, and each set of choices gives us a different subset of {0, 1, 2}. Thus, we get a total of
2 · 2 · 2 = 23 = 8 different subsets of {0, 1, 2}, so |P({0, 1, 2})| = 8. In fact, a more general fact is
true.

Proposition 4.7. Let A be a finite set with |A| = k. Then |P(A)| = 2k.

We do not prove Proposition 4.7 formally right now. It can be proved using induction which
we’ll talk about next week.

Proposition 4.7 also explains why we sometimes use the notation 2A instead of P(A) for the
power set of A.

4.2.3 Uncountable Sets

Earlier in this lecture, we stated that the real numbers were not countable. We use power sets to
illustrate the technique for proving this. In particular, we show as Theorem 4.8 that the power set
of the natural numbers is not countable. The proof we present is our first example of a proof by

contradiction. In a proof by contradiction, we assume the negation of what we want to prove, and
show that this assumption leads to a false statement.

Theorem 4.8. The power set of the natural numbers, P(N), is not countable.

Proof. Assume that P(N) is countable. This means that there exists some enumeration A1, A2,
A3, . . . of all subsets of N. We construct a subset A ⊆ N that is not present in this enumeration.

Consider a table whose rows correspond to subsets in our enumeration, and whose columns
correspond to the natural numbers. The table entry in row corresponding to Ai and column j tells
us whether j − 1 is a member of Ai.

Now let’s construct our set A. We put j into A if j /∈ Aj+1, and say that j /∈ A if j ∈ Aj+1.
Hence, we have A = {x | x− 1 ∈ Ax}. This makes A well-defined because membership of j in A is
determined only by membership of j in Aj+1.

Remember that our enumeration contains all subsets of the natural numbers. This means that
A = Ak for some k. But by the way we defined A, k− 1 ∈ A if and only if k− 1 /∈ Ak. This means
that exactly one of A and Ak contains the element k − 1. Therefore, A is actually not Ak. Since k
was arbitrary, this means that A is not part of our enumeration. This contradicts the assumption
that we had an enumeration of all subsets of the natural numbers, so the assumption must be false.
Furthermore, since we chose an arbitrary enumeration, this means that no enumeration of subsets
of integers enumerates them all. It follows that P(N) is not a countable set.

In the proof above, we showed that for every enumeration of subsets of natural numbers, there
is a subset of the natural numbers that is not listed in that enumeration. Note that we are not
allowed to make any assumptions about the enumeration besides the fact that it lists all subsets of
the natural numbers. Making any additional assumption would result in a proof of the fact that
no enumeration satisfying our assumption is an enumeration of all subsets of natural numbers, and
that is not good enough.

To give you a better understanding of why our argument works, let’s illustrate how it constructs
A for one particular enumeration of subsets N. Suppose A1 = ∅, A2 = {0}, A3 = {1}, and
A4 = {1, 2, 3} are the first four sets in some enumeration of the subsets of N. Then since 0 /∈ A1, we
put 0 in A, which ensures that A 6= A1. Next, since 1 /∈ A2, we put 1 in A, and ensure that A 6= A2.
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This process continues on, preventing all sets in the enumeration from being A. We show part of
this process in Table 4.2. We see from Table 4.2 that in order to construct A, we just “flip” the
diagonal entries of that table. For this reason, the technique we used in our proof by contradiction
is called diagonalization.

a \ b 0 1 2 3 · · ·

A1 N N N N · · ·
A2 Y N N N · · ·
A3 N Y N N · · ·
A4 N Y Y Y · · ·
...

...
...

...
...

. . .

A Y Y Y N · · ·

Table 4.2: Example of a table used to prove that P(N) is uncountable. A Y in row corresponding
to Ai and column corresponding to j indicates that j ∈ Ai. An N indicates that j /∈ Ai.

Now we have covered all the necessary tools for the proof that the real numbers are not count-
able. We leave the actual proof as an exercise for the reader, and only give you a hint: Write the
numbers in binary and use diagonalization.

8


