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DRAFT

Last time we began discussing proofs. We mentioned some proof paradigms that are generally
applicable. For implications, we saw how to write a direct proof and an indirect proof. We saw
how to prove equivalences by proving two implications and by constructing a chain of equivalences.
We also saw two techniques applicable to proofs of any statements, namely proof by contradiction
and proof by cases. However, you should not feel limited to using only those methods when you
write proofs. Any sequence of logical deductions starting from a set of axioms and ending with the
proposition you want to prove is acceptable.

Today we focus on a proof paradigm called induction. Induction is an important proof technique
in the realm of discrete mathematics and in computer science. Today we discuss some applications
of this proof technique. We will see different forms of induction in the next lecture, and we will see
some of its applications in computer science in the lecture after that.

6.1 Induction

Consider the set of natural numbers. Suppose we know the following two facts about these numbers:

1. Number 0 is happy.

2. If number n is happy, this makes number n+ 1 happy as well.

We conclude that every natural number is happy. Why? We know that 0 is happy. Then by the
second fact with n = 0, we know that 0 + 1 = 1 is happy as well. To show that 2 is happy, use the
fact that 1 is happy (which we just proved) and the second fact with n = 1. We can continue in
this fashion to prove that every natural number is happy.

The example above demonstrates the key idea behind induction. We use induction to prove
statements of the form (∀n ∈ N)P (n) where P is some predicate mapping natural numbers to
propositions. We do so by proving two statements:

1. The base case: P (0)

2. The induction step: (∀n ∈ N) P (n) ⇒ P (n+ 1)

Proving the base case and the induction step shows that P (n) holds for all n. Formally, the inference
rule is

P (0)
(∀n ∈ N) P (n) ⇒ P (n+ 1)

(∀n ∈ N) P (n)

(6.1)

In the example above, P (n) was “number n is happy”. Note that the two antecedents in the
inference rule correspond directly to the two statements about the happiness of natural numbers
we made at the beginning of this section.
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6.2 Examples

Let’s see some examples of proofs by induction. We start with a simple example that highlights
the technique. Then we show that some predicates P (n) are not suitable for induction, but a
slight rewording of P (n), usually a generalization, may be sufficient to make an inductive proof
go through. We also give an incorrect inductive proof to highlight a common mistake. Our last
example shows we can modify the inference rule (6.1) to get a proof in cases where we are only
interested in some subset of N as opposed to all of N.

Before we start with our first example, let’s give an overview of an inductive argument in steps.

Step 1: Say that we give a proof by induction. Here it is also good to say what “variable” (say n) is
used in the proof.

Step 2: Define a predicate P in terms of our “variable” n, and state the base case and the inductive
step.

Step 3: Prove the base case P (0) using a proof technique of your choice.

Step 4: Prove the inductive step P (n) ⇒ P (n + 1) using a proof technique of your choice. In this
part of the proof, we refer to P (n) as the induction hypothesis.

Step 5: Conclude that we have proved our statement by induction for all n.

We label these steps in the proofs that follow. The labels are only for didactic reasons, and are
not used in mathematical writing.

6.2.1 A Straightforward Example

As our first example of a proof by induction, we prove a statement about the sum of the first n
positive integers.

Theorem 6.1. (∀n ∈ N) 1 + 2 + · · ·+ n = n(n+1)
2

Note that the statement of Theorem 6.1 has the form of the conclusion of the inference rule
(6.1), so it is reasonable to think that an inductive proof could work.

Proof of Theorem 6.1.

Step 1 We give a proof by induction on n.

Step 2 We prove the statement (∀n ∈ N) P (n) where P (n) says that

1 + 2 + · · ·+ n =
n(n+ 1)

2
. (6.2)

Step 3 We first argue the base case P (0). Note that in P (0), the left-hand side of (6.2) is the empty
sum 0, and the right-hand side is 0(0 + 1)/2 = 0, so the base case holds.

Step 4 Now we argue that the inductive step is valid. We to prove the implication P (n) ⇒ P (n + 1)
for an arbitrary n using a direct proof.

Let n ∈ N and assume that P (n) holds, that is, assume that 1 + 2 + · · · + n = n(n + 1)/2.
Consider the sum

1 + 2 + · · ·+ n+ (n+ 1). (6.3)
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The sum of the first n terms in (6.3) is n(n+1)/2 by the induction hypothesis, and we can rewrite
the last term in (6.3) as n+ 1 = 2(n+ 1)/2, so we have

1 + 2 + · · ·+ n+ (n+ 1) = (1 + 2 + · · ·+ n) + (n+ 1) =
n(n+ 1)

2
+

2(n+ 1)

2
=

(n+ 2)(n+ 1)

2
.

This says that

1 + 2 + · · ·+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2
,

which is P (n+ 1).
This completes the proof of the inductive step.

Step 5 It follows by induction that for all n ∈ N, 1 + 2 + · · ·+ n = n(n+1)
2 .

6.2.2 Proving a More General Result

In a proof by induction, we need to pay extra attention to the definition of the statement P (n). In
some cases, our first attempt at an expression for P (n) won’t make our proof go through; however,
it may be possible to tweak P (n) to obtain another predicate P ′(n) and prove the statement
(∀n)P ′(n) instead of (∀n)P (n). This doesn’t look useful if our goal is to prove (∀n)P (n), but P ′(n)
is often a stronger statement that implies P (n). In that case, we use the following inference after
proving (∀n)P ′(n):

(∀n ∈ N) P ′(n)
(∀n ∈ N) P ′(n) ⇒ P (n)

(∀n ∈ N) P (n)

This completes the proof that P (n) holds for all n.

We now give an example of this situation.
Consider a 2n × 2n square grid. We would like to tile it with L-shaped pieces (see Figure 6.1b),

which we call L-shapes. Our tiling should satisfy the following conditions:

1. No two L-shapes overlap.

2. All squares except for one of the four squares in the center of the grid are covered by some
L-shape.

We show a tiling of a 4× 4 grid from Figure 6.1a in Figure 6.1c.
We want to show that it is possible to tile a 2n×2n grid subject to our two conditions for every

n ∈ N. For that purpose, we devise the predicate P (n): “It is possible to tile a 2n× 2n grid subject
to conditions 1 and 2,” and try to prove the following theorem by induction.

Theorem 6.2. For every n ∈ N, it is possible to tile a 2n × 2n grid with L-shapes subject to

conditions 1 and 2.

Proof that does not quite work.

Step 1 We proceed by induction on n.
Step 2 Let P (n) be the statement “it is possible to tile a 2n×2n grid with L-shapes subject to conditions

1 and 2”. We prove the base case P (0) and the inductive step (∀n ∈ N)P (n) ⇒ P (n+ 1).
Step 3 First we prove the base case P (0), that is, we show that it is possible to tile a 1× 1 grid with

L-shapes subject to conditions 1 and 2. A 1× 1 grid consists of only one square, and this square is
in the center of the grid, so we can leave it uncovered. Since there are no other squares in the grid
to cover, this gives us a valid tiling of a 1× 1 grid.

Step 4
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(a) A 2n × 2n grid for n = 2 (b) An L-shape (c) A valid tiling of a 2n × 2n

grid for n = 2. The uncovered
square in the center of the grid
is shaded.

Figure 6.1: Tiling a grid with L-shapes.

Now we prove the inductive step using a direct proof.
Let n ∈ N and assume that we can tile a 2n× 2n grid with L-shapes subject to conditions 1 and

2. Consider a 2n+1 × 2n+1 grid. Split it into four 2n × 2n grids as shown in Figure 6.2a. Without
loss of generality, we can assume that our goal is to tile the 2n+1 × 2n+1 grid so that the uncovered
central square is in the 2n × 2n subgrid labeled with a 2. This is without loss of generality because
we can rotate the grid so that the uncovered square is in subgrid 2.

We are stuck! But now we have a problem. The inductive hypothesis only tells us how to tile each subgrid
using L-shapes so that one of the central squares in that subgrid is not covered but every other
square is covered. However, as we can see in Figure 6.2b, a central square of subgrid 1 is not a
central square of the whole grid. Hence, tiling subgrids 1, 3 and 4 using our inductive hypothesis
produces three uncovered squares, and we cannot cover those without adding extra L-shapes that
overlap with other L-shapes already placed, thus violating condition 1. Moreover, the square that is
supposed to stay uncovered in the 2n+1×2n+1 grid is a corner square of subgrid 2, and the inductive
hypothesis tells us nothing about how to tile a subgrid while leaving a corner uncovered.

Let’s fix it! But not all is lost. If we could somehow move the uncovered squares in subgrids 1, 3 and 4 to
the center of the 2n+1 × 2n+1 grid, we could cover all three of those squares with one L-shape as
shown in Figure 6.3a. What then remains to show is that we can tile a subgrid using L-shapes so
that only one corner square of the subgrid is not covered.

That argument would work, but we take a different route. We prove a more general statement
as Theorem 6.3.

Much better! We pick one square s in the grid, and relax our conditions for a valid tiling as follows:

1′. No two L-shapes overlap.

2′. All squares of the grid except for s are covered by some L-shape.

Theorem 6.3. For every n ∈ N and every square s in a 2n× 2n grid, there is a tiling that satisfies

conditions 1′ and 2′.

Proof.

Step 1 We proceed by induction on n.

Step 2 Let P ′(n) be the statement “it is possible to tile a 2n×2n grid with L-shapes subject to conditions
1′ and 2′”. We prove the base case P ′(0) and the inductive step (∀n ∈ N)P ′(n) ⇒ P ′(n+ 1).

Step 3
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1 2

3 4

(a) Splitting a grid of size 2n+1
× 2n+1 into four grids

of size 2n × 2n.

2

3 4

1

(b) We cannot combine tilings granted by the induc-
tion hypothesis into a tiling of the entire grid. The
tiling of subgrid 1 does not cover a square that is not
in the center of the 2n+1

× 2n+1 grid, and trying to
cover it with an L-shape would cause two L-shapes to
overlap. Moreover, we have no idea how to tile the
2n × 2n subgrid 2 when we want to leave a corner
square of that subgrid uncovered.

Figure 6.2: A failed attempt to prove Theorem 6.2

First we prove the base case P ′(0), that is, we show that it is possible to tile a 1× 1 grid with
L-shapes subject to conditions 1′ and 2′. A 1 × 1 grid consists of only one square. This square is
s, and we can leave it untiled. Since there are no other squares in the grid to tile, this gives us a
valid tiling of a 1× 1 grid.

Step 4 Now we prove the inductive step using a direct proof.
Let n ∈ N and assume that we can tile a 2n×2n grid with L-shapes subject to conditions 1′ and

2′. Consider a 2n+1 × 2n+1 grid. Split it into four 2n × 2n grids as shown in Figure 6.3b. Without
loss of generality, we can assume that s is in subgrid 2. This is without loss of generality because
we can rotate the grid so that s is in subgrid 2.

We are fine! Since we don’t require our tilings to satisfy the over-restrictive condition 2 from Theorem 6.2,
but only the less restrictive condition 2′, the induction hypothesis implies that we can tile subgrid
1 so that its lower-right corner square s1 is not covered. Similarly, we can tile subgrid 2 so that s is
not covered, tile subgrid 3 so that its upper-right corner square s3 is not covered, and tile subgrid
4 so that its upper-left corner square s4 is not covered.

After we combine the four tilings we obtained from the induction hypothesis, the only untiled
squares are the squares s, s1, s3, and s4. We leave s untiled, and we use one L-shape to cover the
squares s1, s3, and s4 as shown in Figure 6.3b. Adding this tile to our four combined tilings gives
us a tiling of the entire grid that covers all squares except for s, which is what we wanted.

Step 5 It follows by induction that for all n ∈ N, we can pick any one square s in a 2n × 2n grid and
tile that grid with non-overlapping L-shapes so that s is the only square that is left uncovered.

Now Theorem 6.2 is a special case of our more general Theorem 6.3.

Correct proof of Theorem 6.2. Let n be an arbitrary natural number, and let s be a central square
of the 2n × 2n grid. By Theorem 6.3, we can tile this grid with non-overlapping L-shapes so that
only s is uncovered.
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1 2

3 4

(a) Cover three central squares with an L-shape. Now
we need to find tilings of each subgrid so that one
corner square is uncovered in each subgrid.

1 2

3 4

(b) In fact, the square we leave uncovered can be any-
where in the grid. Place an L-shape so that it covers
one corner in each of the subgrids not containing the
square we leave uncovered. The induction hypothesis
provides us with a tiling of a subgrid that leaves one
arbitrary square uncovered, so we choose a tiling that
doesn’t cover either the shaded square or that doesn’t
cover the square already covered by our L-shape.

Figure 6.3: Fixing the proof of Theorem 6.2

6.2.3 An Incorrect Proof

Just like with any proof, we need to avoid misleading notation. For example, the following faulty
argument “proves” that all horses have the same color.

Incorrect proof that all horses have the same color.

Step 1 We prove by induction on the number of horses that all horses have the same color.

Step 2 The smallest group of horses is a group of one horse. Since we usually write our predicate P so
that P (0) corresponds to the base case, we define P (n) as “All horses in a group of n + 1 horses
have the same color.”

Step 3 We first prove the base case P (0) which says that all horses in a group of 1 horse have the same
color. If there is only one horse in a group, all horses in that group have the same color as that one
horse, so the statement is true.

Step 4 Now we prove the implication P (n) ⇒ P (n+ 1) for all n. That is, we show for all n that if all
horses in any group of n+1 horses have the same color, then all horses in any group of n+2 horses
also have the same color. We do so using a direct proof.

Assume that all horses in any group of n+1 horses have the same color. Then consider a group
of n + 2 horses. Label those horses h1, h2, . . . , hn+1, hn+2, and form the following two groups of
n+ 1 horses:

Group 1: h1 h2 h3 · · · hn hn+1

Group 2: h2 h3 · · · hn hn+1 hn+2

By the induction hypothesis, all horses in the first group have the same color. Since h2 is in
that group, horses h1, h2, . . . , hn, hn+1 all have the same color as horse h2. The induction hy-
pothesis also implies that all horses in the second group have the same color. Thus, horses
h2, h3, . . . , hn, hn+1, hn+2 all have the same color. In particular, since horse h2 and horse hn+2

are both in that group, horse hn+2 has the same color as horse h2. But then horses h1, h2, . . . , hn,
hn+1 and hn+2 all have the same color.

Step 5
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It follows by induction that for all n, all horses in any group of n + 1 horses have the same
color.

But that conclusion is certainly false. There are horses of multiple colors in the world. Therefore,
there is something wrong with the proof.

The problem is in the proof of the inductive step. To prove the inductive step, one must show
that (∀n ∈ N)P (n) ⇒ P (n + 1). But there is an n for which our argument fails to prove the
implication in the inductive step. In fact, the proof fails for the very first n, i.e., for n = 0. When
n = 0, the implication says “If all horses in any group of 1 horse have the same color, then all
horses in any group of 2 horses have the same color.”

Our argument relies on the fact that horse h2 belongs to both groups of n+1 horses we created.
The first group consists of horses labeled 1 through n+ 1, and if n = 0, this means it consists only
of horse h1. The second group consists of horses labeled 2 through n+ 2 = 2, so it also consists of
only one horse, namely horse h2. Thus, we know that all horses in the group consisting only of h1
have the same color, and all horses in the group consisting only of h2 have the same color. However,
knowing only this does not let us conclude that h1 and h2 both have the same color because these
two groups have no horse in common.

We got misled by the way we wrote the lists of horses in our two groups. We wrote them down
so that they visually overlapped. The groups indeed overlap for n > 0, but do not overlap for
n = 0. Unfortunately, we listed the horses in a way that hides this issue.

6.2.4 Changing the Inference Rule

In the previous section, we gave a somewhat nonstandard definition of the predicate P (n) used in
the inductive proof. We did that in order to fit the inference rule (6.1). Here we encounter another
setting where such a modification would be necessary, but the resulting expression for P (n) would
look clumsy. Thus, instead, we modify our inference rule.

Suppose you are given an infinite number of 4-cent and 7-cent stamps. What amounts of postage
can you realize using your infinite supply?

Before stating and proving any facts about which amounts of postage we can realize, let’s start
listing amounts of postage and see if we can realize them as a combination of 7-cent and 4-cent
stamps. We do this in Table 6.1.

Postage Stamps Postage Stamps Postage Stamps
1 impossible 9 impossible 17 impossible
2 impossible 10 impossible 18 1× 4 + 2× 7
3 impossible 11 1× 4 + 1× 7 19 3× 4 + 1× 7
4 1× 4 12 3× 4 20 5× 4
5 impossible 13 impossible 21 3× 7
6 impossible 14 2× 7 22 2× 4 + 2× 7
7 1× 7 15 2× 4 + 1× 7 23 4× 4 + 1× 7
8 2× 4 16 4× 4 24 6× 4

Table 6.1: Realizability of amounts of postage as a combination of 4-cent and 7-cent stamps. For
example, it is not possible to get a postage of 13 Cents as a combination of 4-Cent and 7-Cent
stamps. On the other hand, we can combine two 4-Cent and one 7-Cent stamp to get a postage of
15 Cents.

7



Lecture 6: Induction 6.2. Examples

We observe Table 6.1 and conjecture that it is possible to realize every postage of 18 Cents or
higher as a combination of 4-Cent and 7-Cent stamps. This is indeed true, and we prove it in a
moment.

Let’s define the predicate P (n) for the inductive proof. A first attempt would be P (n): “It is
possible to realize a postage of n Cents as a combination of 4-Cent and 7-Cent stamps”. But the
base case P (0) would then say: “It is possible to realize a postage of 0 Cents as a combination of
4-Cent and 7-Cent stamps”. While this is a true statement, it is quite useless because we only care
about postages of 18 Cents and more. Thus, we could restate our predicate as P (n): “It is possible
to realize a postage of n + 18 Cents as a combination of 4-Cent and 7-Cent stamps” to get the
correct base case. But then we would have to add 18 to everything in our inductive proof. If we
see a repeating expression like this in our proof, we should consider rewording parts of the proof.

When we introduced induction, our motivation was to prove some property for all natural
numbers. Thus, we defined a predicate P (n) that captured some property of n. We showed the
proposition P (0) was true, and then argued that P (n) implies P (n+ 1) for every natural number
n. But in our current setting, we don’t care about all natural numbers. We only care about natural
numbers that are 18 and greater. Thus, proving P (18) as the base case and proving the implication
P (n) ⇒ P (n+1) for all natural numbers n ≥ 18 as the inductive step is sufficient for proving that
P (n) holds for all natural numbers n ≥ 18. Our modified inference rule becomes

P (18)
(∀n ∈ N) n ≥ 18 ⇒ (P (n) ⇒ P (n+ 1))

(∀n ∈ N) n ≥ 18 ⇒ P (n)

And now we can define P (n): “It is possible to realize a postage of n Cents as a combination of
4-Cent and 7-Cent stamps” and use that in our inductive proof instead of the clumsier expression
that adds 18 to everything.

We are finally ready to state and prove our result.

Theorem 6.4. For every n ∈ N such that n ≥ 18, it is possible to realize a postage of n Cents

using a combination of 4-Cent and 7-Cent stamps.

Proof.

Step 1 We give a proof by induction on n.
Step 2 Let P (n) be the statement “It is possible to realize a postage of n Cents as a combination of

4-Cent and 7-Cent stamps”. We prove the base case P (18) and the inductive step P (n) ⇒ P (n+1)
for all n ≥ 18.

Step 3 We can combine one 4-Cent and two 7-Cent stamps to get a postage of 4 + 2 · 7 = 18 Cents.
This proves the base case P (18).

Step 4 Let n ≥ 18 and assume it is possible to realize a postage of n Cents as a combination of 4-Cent
and 7-Cent stamps. This means that there are a, b ∈ N such that n = 4a+7b. Observe that either
b 6= 0 or b = 0. We prove by cases that there exist a′, b′ ∈ N such that n + 1 = 4a′ + 7b′. In the
first case, we use at least one 7-Cent stamp, and in the second case we use no 7-Cent stamps.

Case 1: b = 0. Since n = 4a+ 7b, we can write

n+ 1 = 4a+ 7b+ 1 = 4a+ 7(b− 1) + 1 · 7 + 1 = 4a+ 7(b− 1) + 8 = 4(a+ 2) + 7(b− 1). (6.4)

Equation (6.4) shows that n+1 = 4(a+2)+7(b−1). Let a′ = a+2 and b′ = b−1. Since a ≥ 0 and
b ≥ 1, both a′ and b′ are natural numbers, which means that n+ 1 = 4a′ + 7b′ for some a′, b′ ∈ N.
Then we can get a postage of n+ 1 by combining a′ 4-Cent and b′ 7-Cents stamps.
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Case 2: b = 0. In this case we only use 4-cent stamps. Thus, n ≥ 20 because we cannot realize
18 or 19 Cents of postage using only 4-Cent stamps. Furthermore, since n ≥ 20, we are using at
least five 4-Cent stamps, so a ≥ 5. We now have n = 4a, and can write

n+ 1 = 4a+ 1 = 4(a− 5) + 4 · 5 + 1 = 4(a− 5) + 21 = 4(a− 5) + 7 · 3. (6.5)

Equation (6.5) shows that n + 1 = 4(a − 5) + 7 · 3. Let a′ = a − b and b′ = 3. Since a ≥ 5, a′

is a natural number. We defined b′ as a natural number too. Like in case 1, we conclude that
n + 1 = 4a′ + 7b′ for some a′, b′ ∈ N. Then we can get a postage of n + 1 by combining a′ 4-Cent
and b′ 7-Cents stamps.

Step 5 It follows by induction that for every n ∈ N such that n ≥ 18, it is possible to realize a postage
of n Cents using a combination of 4-Cent and 7-Cent stamps.

6.3 Next Time

We will see another way to modify the inference rule in the next lecture. The inference rule we will
describe is the basis of a proof technique called strong induction.

9


