
CS/Math 240: Introduction to Discrete Mathematics 2/17/2011

Lecture 9 : Invariants

Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený

DRAFT

Last time we discussed inductive definitions and proving properties of inductively defined con-
cepts using structural induction. Then we saw another application of inductive proofs, namely
proving invariants. Today we continue our study of invariants with a discussion of program cor-
rectness.

9.1 Program Correctness

Showing that a program is correct means that it does what it is supposed to do. More formally, our
goal is to prove that a program satisfies its specification, that is, it correctly realizes the prescribed
relationship between inputs and outputs. In other words, for each input, the specification tells us
what the program should output as a response.

There are two parts to correctness of a program.

1. Partial correctness: If the program ever returns a result, it is the correct result.

2. Termination: The program returns.

Today we prove the correctness of the grade school multiplication algorithm.

9.2 Grade School Multiplication Algorithm

Let’s start start with the specification. As input, the program receives two positive integers, a and
b. As output, it should return their product, i.e., a · b.

9.2.1 Binary Representation of Integers

To make the analysis easier, we will work with binary representations of numbers instead of decimal
representations. As we will see, this makes the grade school multiplication algorithm easier to
describe.

In the usual decimal representation of a number, we represent a (k + 1)-digit integer n as
a sequence of digits between 0 and 9 and write it as dkdk−1 . . . d1d0 with di ∈ {0, 1, . . . , 9} for
i ∈ {0, 1, . . . , k}. Another way to think about n is as a sum of powers of 10, that is

n =
k
∑

i=0

di · 10
i, di ∈ {0, 1, . . . , 9}. (9.1)

For example, the sum of the form (9.1) corresponding to the integer 14376 is

1 · 104 + 4 · 103 + 3 · 102 + 7 · 10 + 6 · 100

1



Lecture 9: Invariants 9.2. Grade School Multiplication Algorithm

(so d4 = 1, d3 = 4, d2 = 3, d1 = 7, and d0 = 6).
To obtain a description of the form (9.1) from some integer n, start with n0 = n. Take the last

digit of n0, that is, take the remainder after dividing n0 by 10, set d0 to that remainder, and then
subtract d0 from n0. Notice that n0 − d0 is divisible by 10. Dividing n0 − d0 by 10 gives us an
integer n1. Next, repeat the process with n1. Take the last digit of n1 by finding the remainder
after dividing n1 by 10, make the remainder d1, subtract d1 from n1, divide the difference by 10,
and get n2. Keep repeating this process until you end with nk+1 = 0.

For example, if we do this with n = 14376, we get the values in Table 9.1.

i ni di ni − di
0 14376 6 14370
1 1437 7 1430
2 143 3 140
3 14 4 10
4 1 1 0
5 0

Table 9.1: Obtaining the decimal representation of n = 14376.

Of course, for decimal numbers, this is a silly procedure since we can just read off the numbers
d0 through dk from the decimal representation of n right away; however, it gives us a key insight
into how to find the binary representation of n. To get the binary representation of n, we cannot
just read the bits bi off of the decimal representation of n, but we can apply the algorithm we
described, except with 2 in place of 10, and with the remainders being either 0 or 1 instead of being
one of 0 through 9. In the end, we obtain a representation of n of the form

l
∑

i=0

bi · 2
i, bi ∈ {0, 1}, (9.2)

and can write the binary representation of n as blbl−1 . . . b1b0.
Table 9.2 shows how we obtain the binary representation of n = 75, 1001011.

i ni bi ni − bi
0 75 1 74
1 37 1 36
2 18 0 18
3 9 1 8
4 4 0 2
5 2 0 1
6 1 1 0
7 0

Table 9.2: Obtaining the binary representation of n = 75. Reading the bi column from bottom to
top gives us the binary representation of n, 1001011.

To give some reasoning behind why the algorithm for obtaining a binary representation works,
rewrite (9.2) as

b0 +
l
∑

i=1

bi2
i = b0 + 2

(

l
∑

i=1

bi2
i−1

)

.

2



Lecture 9: Invariants 9.2. Grade School Multiplication Algorithm

We see that b0 is the remainder after dividing n0 by 2, and we get n1 by subtracting the remainder
and dividing the difference by 2. Then we continue the process with

n1 =

l
∑

i=1

bi2
i−1 =

l−1
∑

i=0

bi+12
i.

9.2.2 Description of the Algorithm

Now let’s review the grade school multiplication algorithm. We write the two numbers we multiply,
a and b, above each other. We multiply a by the last digit of b, and write down the result below
b. Then we multiply a by the next to last digit of b, and write down the result on the next line,
shifted one digit to the left. In general, when we write down the result of multiplying a by some
digit of b, we write down the result so that its last digit is in the same column as the digit of b we
used to produce the result. If some digit of b is zero, we simply skip it and don’t write anything
down. Finally, we add up all the intermediate results we wrote down to get the product a · b. We
show this for a = 14376 and b = 108 in Figure 9.1a.

14376
· 2108

115008
14376
28752

30304608

(a) Using decimal representa-
tion

10011
· 1101

10011
10011
10011

11110111

(b) Using binary representa-
tion

10011
· 1101

10011
10011

1011111
10011

11110111

(c) Adding immediately

Figure 9.1: Grade school multiplication algorithm.

Using binary representations instead of decimal representations greatly simplifies our rules for
multiplication. Our multiplication table goes down from being 10 × 10 to being just 2 × 2. This
makes the description of the “college version” of the grade school algorithm very easy. In each step,
we look at one bit of b. If the bit is 1, we copy down a so that its last bit lines up with the bit of
b we’re currently considering. Then we perform binary addition of the intermediate results to get
the result. In the example in Figure 9.1b, we multiply 19 · 13 in binary and get 247.

In order to analyze the algorithm, we should define it more formally. In its current version,
we need to keep track of possibly many intermediate results, one for each bit of b. That would
make the analysis more complicated. Notice that it doesn’t matter whether we first perform all
the multiplications and then add together all the intermediate results, or whether we perform an
addition step after a multiplication step. An example is shown in Figure 9.1c. This version looks
like more work because we have to perform multiple additions, but has the advantage that we only
need to keep track of one variable that holds the sum of the intermediate results obtained so far.

Finally, we formalize our algorithm as Algorithm 1. The variable y represents the part of the
number b we still need to multiply a with. We multiply x by two in each iteration of the loop so
as to simulate lining up the last bit of the intermediate result with the bit of b used in the current
multiplication step. The variable p holds our running total from Figure 9.1c. Finally, the notation
⌊m⌋ on line 6 means that we round m down to the nearest integer, and we read ⌊m⌋ as the “floor of
m”. Thus, ⌊y/2⌋ means we divide y by two and round down, which corresponds to cutting off the

3



Lecture 9: Invariants 9.2. Grade School Multiplication Algorithm

last bit from y. We can dispose of that bit because we’ve already multiplied a with it and won’t
need it for anything else.

Algorithm 1: Binary Multiplication Algorithm

Input: a, b - positive integers we want to multiply
Output: ab - product of a and b

(1) x← a
(2) y ← b
(3) p← 0
(4) while y > 0 do
(5) if y is odd then p← p+ x
(6) y ← ⌊y/2⌋
(7) x← 2x

(8) end
(9) return p

9.2.3 Correctness of the Algorithm

Recall that there are two conditions a correct algorithm must satisfy: the partial correctness con-
dition and the termination condition. Let’s see what they are in the case of Algorithm 1.

1. Partial correctness: When we reach line 9, p = ab.

2. Termination: We eventually reach line 9. In other words, the loop on line 4 ends after a finite
number of iterations.

It is fairly easy to see what happens on the first three lines. We just initialize our variables.
Hence, the crux of all our arguments about Algorithm 1’s behavior will be in proving facts about
the behavior of the loop on line 4.

We can view our algorithm as a system whose state is represented by the values of the variables
x, y, and p. We are trying to prove some facts about the state of the algorithm after each repetition
of the loop, that is, after each “time step”. This sounds like a setting for the use of invariants, and
indeed, we will prove certain loop invariants on our way towards a proof that Algorithm 1 works
correctly. More formally, a loop invariant is a property that holds at the beginning and after any
number of iterations of a loop. A loop invariant usually describes relationships among variables.

9.2.3.1 Partial Correctness

To prove partial correctness, we prove the following loop invariant.

Invariant 9.1. After n iterations of the loop on line 4, ab = xy + p.

Proof. Let xn, yn, and pn be the values of x, y, and p after n iterations of the loop from line 4,
respectively. We show that

ab = xnyn + pn (9.3)

for every natural number n.
We prove by induction that (∀n)P (n) where P (n) is “equation (9.3) holds”.

4



Lecture 9: Invariants 9.2. Grade School Multiplication Algorithm

For the base case, P (0), there haven’t been any iterations of the loop yet, so x0, y0, and p0 have
the values from the first three lines of Algorithm 1. Thus, x0 = a, y0 = b, and p0 = 0. We see that
x0y0 + p0 = ab+ 0 = ab, so the base case is proved.

Now we prove the inductive step (∀n)P (n) ⇒ P (n + 1). Since there is an if statement in the
loop body, we use a proof by cases.

Case 1: yn is odd. In this case we execute the body of the if statement, and add xn to pn. Since
nothing else happens to the value of p in the loop body, we get pn+1 = pn + xn. Next, since yn is
odd, we can write yn = 2k+1 for some integer k, namely k = (yn− 1)/2. After line 6 executes, we
have yn+1 = ⌊yn/2⌋ = ⌊(2k + 1)/2⌋ = ⌊k + 1

2⌋ = k = (yn − 1)/2. Finally, the last line of the loop
body doubles the value of x, so xn+1 = 2xn.

Now we have found the values of x, y and p at the end of the (n+ 1)st iteration of the loop, so
we can verify that (9.3) holds after the loop is complete. We have

xn+1yn+1 + pn+1 = 2xn
yn − 1

2
+ pn + xn = xn(yn − 1) + xn + pn = xnyn + pn,

and the right-hand side is ab by the induction hypothesis. Hence, if yn is odd, the invariant is
maintained.

Case 2: yn is even. In this case the if statement body is skipped, so the value of p doesn’t
change, and we get pn+1 = pn. Next, since yn is even, we can write yn = 2k for some integer k,
namely k = yn/2. After line 6 executes, we have yn+1 = ⌊yn2 ⌋ = ⌊

2k
2 ⌋ = ⌊k⌋ = k = yn/2. It follows

that yn+1 = yn/2. Finally, the last line of the loop body doubles the value of x, so xn+1 = 2xn.
Now we have found the values of x, y and p at the end of the (n+ 1)st iteration of the loop, so

we can verify that (9.3) holds after the loop is complete. We have

xn+1yn+1 + pn+1 = 2xn
yn
2

+ pn = xnyn + pn,

and the right-hand side is ab by the induction hypothesis. It follows that if yn is even, the invariant
is maintained.

This completes the proof of the induction step, and also of our proposition.

We get out of the loop if y ≤ 0 at the end of some iteration. If we show that y = 0 after the
last iteration of the loop, Invariant 9.1 implies that ab = xy+ p = 0+ p = p, which proves that the
value of p after the loop terminates is ab. It suffices to show as another loop invariant that y never
becomes negative.

Invariant 9.2. After n iterations of the loop, y ≥ 0.

Proof. The proof goes by induction. Like an an earlier proof, let yn be the value of y after n
iterations of the loop.

We see that y0 ≥ 0 because y0 = b > 0, which proves the base case.
Now assume yn ≥ 0, and consider the (n + 1)st iteration of the loop. Inside of the loop body,

y only changes on line 6. There, we divide y by 2 and round down the result to get yn+1. Since
yn ≥ 0, yn/2 ≥ 0 as well, and rounding down a non-negative number cannot round down below
zero, which proves that yn+1 ≥ 0. Hence, the inductive step is proved, and so is the invariant.

The loop condition implies that when the loop is over, y ≤ 0. We just showed that y ≥ 0
throughout the algorithm. It follows that when the loop terminates, y = 0, which means that the
algorithm returns p = ab. Hence, partial correctness of Algorithm 1 is proved.

5



Lecture 9: Invariants 9.3. Next Time

Let us offer some intuition behind Invariant 9.1. Again, it takes some ingenuity to come up
with this invariant. One way of thinking is that in each iteration of the loop, we “shift” x to the
left and y to the right. This corresponds to multiplying x by 2 and dividing y by 2. We cut off the
last bit of y in the process, and if the last bit of y was 1, we compensate for this loss by adding x
to our partial result p.

9.2.3.2 Termination

To complete our correctness proof for Algorithm 1, we show that the loop on line 4 eventually
terminates. For this, we show that the value of y decreases in each iteration of the loop by at least
one. Intuitively, this is true because y is a positive integer and we divide it by two in every step
and round down, which should decrease its value. Now let’s argue formally.

Proposition 9.3. If y > 0, ⌊y/2⌋ ≤ y − 1.

Proof. Write y = 2k + r where r ∈ {0, 1} and k ∈ N. Then ⌊y/2⌋ = ⌊(2k + r)/2⌋ = ⌊k + r/2⌋ = k.
To show ⌊y/2⌋ = k ≤ y− 1 = 2k+ r− 1, just observe that the only way this would not hold for

some k ∈ N and r ∈ {0, 1} is if k = r = 0, but in that case we would have y = 0, which is a case
our proposition doesn’t consider.

Since y is initialized to b at the beginning of the algorithm and decreases by at least one in
every iteration of the loop by Proposition 9.3, it follows that after at most b iterations of the loop,
y becomes zero, at which point the loop terminates and the algorithm returns.

Now the proof of Algorithm 1’s correctness is complete.

9.3 Next Time

Next time we will discuss the algorithm for finding the greatest common divisor of two integers.

6


