
CS/Math 240: Introduction to Discrete Mathematics 2/22/2011

Lecture 10 : Program Correctness

Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený

DRAFT

Last time we started discussing correctness of programs as one application of proofs by induction.
Today we give one more example of a program correctness proof, and then start discussing recursion.
We can view recursion as a generalization of inductive definitions.

10.1 One More Program Correctness Proof

Recall that in order to prove a program correct, we need to show that the program satisfies two
conditions:

1. Partial correctness: If the program ever returns a result, it is the correct result.

2. Termination: The program returns.

In order to prove partial correctness, we must know what the output is supposed to be on a given
input. This information is provided by the program’s specification, which is a formal description of
the relationship between the program’s inputs and outputs.

Last time we proved correctness of the grade school multiplication algorithm. Today we prove
correctness of an algorithm for finding the greatest common divisor of two integers.

10.1.1 Greatest Common Divisor

We start by defining what we mean by greatest common divisor.

Definition 10.1. The greatest common divisor of integers a and b, denoted gcd(a, b), is the largest
integer d such that d divides both a and b. Furthermore, if c divides both a and b, then c also divides
gcd(a, b).

Because zero is divisible by every integer, gcd(0, 0) is undefined. In more generality, gcd(a, 0)
is undefined if a = 0, and is a when a > 0. To see the latter, note that the largest divisor of a is a
itself, and a also divides zero (because every integer does). Similarly, gcd(0, b) is undefined if b = 0,
and is b otherwise.

We state and prove three properties of the greatest common divisor. We will use these properties
to construct an algorithm for finding greatest common divisors.

Lemma 10.2. Let a, b ∈ N with at least one of a, b nonzero. Then the following three properties
hold.

(i) If a = b, gcd(a, b) = a = b.

(ii) If a < b, gcd(a, b) = gcd(a, b− a).

(iii) If a > b, gcd(a, b) = gcd(a− b, a).

1

Lecture 10: Program Correctness 10.1. One More Program Correctness Proof

Proof. When a = b, a divides both a and b. Furthermore, no integer greater than a divides a, so
gcd(a, b) = a = b. This proves (i).

Now let’s argue (ii). We show that d is a divisor of both a and b if and only if d is a divisor of
both a and b− a. We do so by proving two implications.

First assume that d is a divisor of both a and b. Then there exist integers c1 and c2 such that
a = c1d and b = c2d. Therefore, we can write b− a = (c2− c1)d, and we see that b− a is a multiple
of d, which implies that d divides b− a. Since d also divides a by assumption, we have shown that
d divides both a and b− a.

For the other direction, assume d is a divisor of both a and b− a. Then there exist integers c1
and c2 such that a = c1d and b− a = c2d. Therefore, we can write b = (b− a)+ a = (c2+ c1)d, and
we see that b is a multiple of d, which implies that d divides b. Since d also divides a by assumption,
we have shown that d divides both a and b.

Therefore, the sets {d | d divides a and d divides b} and {d | d divides a and d divides b − a}
are the same, so they both have the same largest element. This largest element is the greatest
common divisor of both a and b, and of a and b− a. This completes the proof of (ii).

We would argue (iii) the same way as (ii), except with the roles of a and b switched. This
completes the proof of the lemma.

10.1.2 The GCD Algorithm

The observations proved as Lemma 10.2 are a good starting point for an algorithm that computes
the greatest common divisor of two numbers. The basic idea is to use (ii) and (iii) of Lemma 10.2
to decrease the values of x and y used for the computation of the greatest common divisor with the
hope that they eventually achieve values for which the greatest common divisor is easy to compute
(such as case (i) of Lemma 10.2).

We describe the algorithm formally now, and show the specification together with the algorithm.

Algorithm 1: GCD Algorithm

Input: a, b positive integers
Output: gcd(a, b)

(1) (x, y)← (a, b)
(2) while x 6= y do
(3) if x < y then y ← y − x
(4) else x← x− y

(5) end
(6) return x

To argue correctness of Algorithm 1, we must show that the algorithm returns the greatest
common divisor of its two inputs, a and b, and that it terminates. To that end, we define and prove
some loop invariants.

Observe that the loop on line 2 terminates when x = y, and in that case gcd(x, y) = x. At
the beginning, we have x = a and y = b, so gcd(x, y) = gcd(a, b). If we show that we maintain
gcd(a, b) = gcd(x, y) throughout the algorithm, that will give us partial correctness. In fact, it is
possible to show this, and we do so now.

Invariant 10.3. After n iterations of the loop on line 2, gcd(a, b) = gcd(x, y).

2

Lecture 10: Program Correctness 10.1. One More Program Correctness Proof

Proof. We prove this invariant by induction on the number of iterations of the loop.
Let xn and yn be the values of x and y after n iterations of the loop, respectively.
For the base case, we have x0 = a and y0 = b from line 1, so gcd(x0, y0) = gcd(a, b).
To prove the inductive step, assume that gcd(xn, yn) = gcd(a, b).
If xn = yn, there isn’t going to be another iteration of the loop. In this case we don’t need to

argue about the values of x and y after the (n+ 1)st iteration of the loop at all.
Now suppose that xn 6= yn. Then there will be another iteration of the loop, and we have two

cases to consider.
Case 1: xn < yn. Then xn+1 = xn and yn+1 = yn − xn. We see that

gcd(xn+1, yn+1) = gcd(xn, yn − xn) = gcd(xn, yn) = gcd(a, b). (10.1)

The second equality in (10.1) follows by part (ii) of Lemma 10.2 and the last equality follows by
the induction hypothesis. Therefore, gcd(xn+1, yn+1) = gcd(a, b) in this case.

Case 2: xn > yn. Then xn+1 = xn − yn and yn+1 = yn. We see that

gcd(xn+1, yn+1) = gcd(xn − yn, yn) = gcd(xn, yn) = gcd(a, b). (10.2)

The second equality in (10.2) follows by part (iii) of Lemma 10.2 and the last equality follows by
the induction hypothesis. Therefore, gcd(xn+1, yn+1) = gcd(a, b) in this case as well.

This completes the proof of the induction step, and of the invariant.

To argue partial correctness, we observe that when the loop terminates, gcd(x, y) = gcd(a, b) by
Invariant 10.3. Next, since the loop terminated, x = y, so gcd(x, y) = x. Therefore, x = gcd(a, b),
and we return x, so we return gcd(a, b) as desired. This completes the proof of partial correctness.

Here we remark that in practice, we would not spell out the argument for Case 2 in the proof of
Invariant 10.3 because it is almost the same as the argument for Case 1. In mathematical writing,
we would just say that if xn > yn, an argument similar to the one for Case 1 shows that the
invariant is maintained after n+ 1 iterations of the loop in Case 2 as well.

We actually took this shortcut in the proof of Lemma 10.2 where we omitted the proof of
part (iii). Make sure that when you take such a shortcut in mathematical writing, you at least
check that the omitted proof goes through, for example by writing it down somewhere else.

We now argue that Algorithm 1 terminates by showing that the loop on line 2 terminates after
some number of iterations. We prove an additional loop invariant in order to do so.

Invariant 10.4. After n iterations of the loop, x > 0 and y > 0.

Proof. We prove the invariant by induction. As in the proof of Invariant 10.3, let xn and yn be the
values of x and y after n iterations of the loop, respectively.

Before the loop starts, x0 = a, y0 = b, and the specification tells us that a, b > 0. This proves
the base case.

Now assume that xn > 0 and yn > 0 for some n. If xn = yn, there is not going to be an (n+1)st
iteration of the loop. If xn 6= yn, there are two cases. If xn < yn, xn+1 = xn > 0, and we subtract x
from y to get yn+1 = yn− xn, which is greater than zero because yn > xn. Thus, xn+1, yn+1 > 0 in
this case. We can argue similarly in the case xn > yn, and we see that the invariant is maintained
after the (n+ 1)st iteration of the loop.

3

Lecture 10: Program Correctness 10.1. One More Program Correctness Proof

To prove that an algorithm terminates, we often find a quantity, sometimes called a potential,
that decreases in discrete steps over time, and show that it cannot go below a certain threshold.
In our case, the potential is x+ y, and decreases by either x or y (that’s the “discrete step”) after
each iteration of the loop (i.e., “over time”). We use this quantity to prove termination.

When x = y, the algorithm terminates right away, so there is nothing to prove in this case.
Now suppose x 6= y after n iterations of the loop. That is, in our earlier notation, xn 6= yn. Then,
depending on which of xn, yn is greater, either xn+1 = xn−yn and yn+1 = yn, or or yn+1 = yn−xn
and xn+1 = xn. Invariant 10.4 tells us that xn, yn > 0, so either xn+1 ≤ xn − 1 or yn+1 ≤ yn − 1.
In either case, xn+1 + yn+1 ≤ xn + yn − 1, so x+ y decreases by at least 1 in each iteration of the
loop.

Since x0 = a and y0 = b, it follows that if the algorithm has gone through m = a + b − 2
iterations of the loop without terminating, xm + ym ≤ x0 + y0 −m = 2. But Invariant 10.4 tells
us that xn + yn ≥ 2 after every iteration of the algorithm, so xm + ym ≥ 2 (this states that our
potential x+ y never goes below a certain threshold). Therefore, xm = ym = 1 since both xm and
ym are positive integers, and the algorithm terminates after the m-th iteration.

This completes the proof of correctness of Algorithm 1.

10.1.3 A Remark about Writing Proofs

Observe that we cannot prove xn+yn ≥ 2 only with Invariant 10.3. If we did not prove Invariant 10.4
beforehand, we would not be able to show that our potential x+y is bounded below by the threshold
value of 2.

So, what would have happened if we had never stated and proved Invariant 10.4 and if we had
never stated that lemma? We would have still known that x+ y was decreasing. That would have
led us, after some thinking, to the following thought process: The quantity x + y decreases after
every iteration, so it will become negative at some point. But if it gets negative, one of x or y
would be negative. This can’t happen, though, because we only subtract smaller values from larger
ones in the loop. Actually, we can’t even get x or y to be zero because that would mean x and y
were equal before the iteration that supposedly sets one of them to zero. So we see that x, y > 0
at all times, and the smallest x + y can be is 2. At this point, we would have written down the
statement of Invariant 10.4 and continued with our termination proof.

The lesson to take away from this is that you should not give up if you get stuck on a proof.
When you get stuck, think about why you are stuck. Maybe other facts you know could help you
continue with the proof. There may be some facts you have not used in your argument yet. Also
try to make more observations about the problem. Many proofs consist of multiple ingredients
that need to be mixed together in the right way, and chances are you are not going to find all the
ingredients and techniques right away.

As we said earlier in the course, this takes some ingenuity, so make sure you give yourself enough
time, too. Also, if you are stuck on a proof too long, open your mind to the possibility that the
fact you are trying to prove is wrong (maybe not if we tell you to prove a fact on a homework
assignment, but it’s a good thing to keep in mind).

10.1.4 On the Importance of a Precise Specification

Before we move on to recursion, we point out the importance of a precise specification. Suppose
we allowed a or b to be any natural numbers. Consider the input a = 0, b = 1. Then x = 0 and
y = 1 when we enter the loop for the first time. The condition of the if statement is satisfied, so
we subtract x from y on line 3, which doesn’t do anything since x = 0. Thus, x and y have not

4

Lecture 10: Program Correctness 10.2. Recursion

changed at all in this iteration of the loop, and the same thing will happen in subsequent iterations.
Thus, our algorithm gets stuck in an infinite loop on this input.

Note that in the situation above, Invariant 10.4 doesn’t hold when the program starts, so we
cannot use it to prove termination on the bad input. If we allowed inputs to be zero, we would
not be able to prove the base case in the inductive proof of Invariant 10.4, and would fail to prove
correctness of Algorithm 1. But we did require a, b > 0, so we don’t need to reason about inputs
that don’t satisfy that requirement, and our proof of Invariant 10.4 goes through.

The lesson to take away from this is that, in addition to specifying the input-output relationship,
the specification also indicates which inputs the program was designed to work with. We only
need to prove correctness on those inputs. The program may work on other inputs too, but isn’t
guaranteed to work—it could also wipe your hard drive on bad input. It is the responsibility of the
user who runs the program to ensure that the inputs are valid.

10.2 Recursion

The main idea behind recursion is that we can often reduce the solution of a problem to easier
instances of the same problem. This concept applies to definitions as well as to algorithms or
programs. For example, the constructor rule of an inductive definition can be thought of as a
recursive definition since it defines one instance of a concept in terms of smaller instances. For
programs, recursion means that we call the program from itself, but on a smaller input. We call
such a call a recursive call.

It is key that each recursive call to the program is a call that uses a smaller input, so that some
call is eventually made with an input for which the problem solved by the program is trivial and for
which the program can return the answer right away without any additional recursive calls. This
causes an end to the chain of recursive calls, and the recursively called instances of the program
terminate, one by one, with the instance called last returning first. If the recursive calls don’t use
smaller inputs, the program could keep calling itself forever and never terminate.

The next three sections give examples of recursive algorithms for problems you have seen. The
goal of these examples is to ease you into thinking in terms of recursion.

10.2.1 Fibonacci Numbers

We can view the definition of the n-th Fibonacci number as a recursive definition. The constructor
rule says that Fn = Fn−1 + Fn−2. In recursion terms, the “smaller instances” in the recursive
definition of the n-th Fibonacci number are Fibonacci numbers with a lower index than n. The
foundation rules F1 = 1 and F2 = 1 correspond to the base cases where we don’t need another
application of recursion.

We can turn the recursive definition of the n-th Fibonacci number into a recursive program
that calculates the n-th Fibonacci number. Before we do so (and before we write any program),
we should have a specification available. In this case, our program receives a positive integer, n, as
input, and returns the n-th Fibonacci number. We give the program as a Function called Fib.

10.2.2 Greatest Common Divisor

We can also rewrite the GCD algorithm (Algorithm 1) using recursion. Observe that the behavior
of the function GCD is the same as the behavior of Algorithm 1.

5

Lecture 10: Program Correctness 10.2. Recursion

Algorithm Fib(n)

Input: n - A positive integer
Output: Fn - The n-th Fibonacci number

(1) if n = 1 or n = 2 then return 1
(2) else return Fib(n-1)+ Fib(n-2)

Algorithm GCD(a, b)

Input: a, b - positive integers
Output: gcd(a, b) - their greatest common divisor

(1) if a = b then return a
(2) if a < b then return GCD(a, b− a)
(3) if a > b then return GCD(a− b, b)

10.2.3 Grade School Multiplication Algorithm

Finally, we rewrite the grade school multiplication algorithm from last lecture using recursion. We
offer some intuition behind the recursive description.

Write b = 2q + r where q = ⌊b/2⌋ and r ∈ {0, 1}. Then r corresponds to the last bit in the
binary representation of b, and q is formed by the all the remaining bits. To get q out of the binary
representation of b, we just “cut off” the last bit from the binary representation of b. Thus, it
is possible to obtain binary representations of q and r from the binary representation of b. Also
notice that to multiply a number x by 2, we just append a zero after the last bit of the binary
representation of x.

If b = 2q+ r, we can write ab = a(2q+ r) = 2(aq) + ar. This reduces the multiplication ab into
three multiplications, namely ar, aq, and multiplying aq by 2. Let’s argue that these multiplication
problems are easier so as to give ourselves some confidence that we don’t just keep increasing the
number of multiplications without end.

First, multiplication by r is easy because r is either 0 or 1. In the former case, ar = 0, and in the
latter case, ar = a, so we don’t need an additional recursive call here. Second, the multiplication
aq is a multiplication of a by a number that is smaller than b, so this is a multiplication problem
with a smaller input than the original problem. Finally, we saw in the previous paragraph how
to multiply by 2 in binary: We just append a zero at the end of the binary representation of the
number we multiply by 2 and return right away without another recursive call. Thus, we have
reduced the problem of multiplying a and b into three easier multiplication problems.

Now that we have some intuition, let’s write down the algorithm. It is not an exact transcript
of our intuition, but is close. It also allows for multiplication by zero.

Algorithm MULT(a,b)

Input: a, b - integers
Output: ab - their product

(1) if b = 0 then return 0
(2) if b is even then return 2 · MULT(a, ⌊b/2⌋)
(3) else return 2 · MULT(a, ⌊b/2⌋)+ a

6

Lecture 10: Program Correctness 10.3. Next Time

10.3 Next Time

To argue correctness of recursive algorithms, we usually use induction like we did to argue program
correctness for non-recursive programs. As before, we will prove partial correctness and termination.

7

