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DRAFT

Last time we started talking about recursion. It is convenient for solving problems whose
solutions can be reduced to easier instances of the same problem. We’ve seen last time how to
convert some earlier algorithms from class into recursive programs. Today we discuss correctness
of recursive programs.

11.1 Correctness of Recursive Programs

When we show correctness, we show that the program meets its specification. We use the word
preconditions for the conditions a valid input must satisfy, and the word postconditions for the con-
ditions the output of the program must satisfy after receiving an input satisfying the preconditions.
Using this terminology, a correct program must satisfy the following condition:

Condition (∗): For all possible inputs that satisfy the preconditions, the program produces an

output that satisfies the postconditions, assuming it halts.

We phrase the program correctness requirement this way because sometimes the program is
designed to work only on some inputs. We saw an example of this last class when our greatest
common divisor algorithm worked only on positive inputs, even though the greatest common divisor
of zero and a positive number is also defined. Preconditions are also important when we argue
correctness of recursive algorithms by induction. As part of the induction hypothesis, we assume
that all recursive calls for which the input satisfies the preconditions terminate and return the
correct value.

The breakup of correctness into partial correctness and termination remains when proving the
correctness of recursive programs.

1. Partial correctness: The program produces correct output, assuming the input satisfies the
preconditions and condition (∗) holds for all the recursive calls.

2. Termination: On all inputs that satisfy the preconditions, the program produces some output.

We now give correctness proofs of the recursive algorithms we presented last lecture.

11.1.1 Greatest Common Divisor

We restate the recursive algorithm for computing greatest common divisors as function GCD, and
then prove its correctness.

Algorithm GCD(a, b)

Input: a, b ∈ N, a > 0, b > 0
Output: gcd(a, b)

(1) if a = b then return a
(2) if a < b then return GCD(a, b− a)
(3) if a > b then return GCD(a− b, b)
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Let’s start with partial correctness. The structure of the proof will follow the structure of the
algorithm. We will have one case for each of the lines in the description of the algorithm.

Case 1: a = b. In this case, the algorithm returns a, and this is the correct answer because
gcd(a, b) = gcd(a, a) = a. (Think of this case as the base case of an inductive proof.)

Case 2: a < b. In this case gcd(a, b) = gcd(a, b− a) by a result from last lecture. Since b > a, a
and b−a are both positive integers, so the preconditions of GCD are satisfied. Hence, Condition (∗)
implies that the call GCD(a,b-a) returns gcd(a, b−a) = gcd(a, b), and that’s what we return. Thus,
we get partial correctness in this case as well.

Case 3: a > b. The argument for this case is similar to the one for Case 2, except the roles of
a and b are interchanged.

This completes the proof of partial correctness.

Now let’s argue termination. We give a proof by induction on a+ b. Again, we break down the
proof based on the three cases in the algorithm.

Since a, b > 0 by the preconditions, the smallest a + b can be is 2. In that case a = b = 1, so
the algorithm returns. This proves the base case.

For the inductive step, assume that when a+ b ≤ n and a and b satisfy the preconditions, the
algorithm terminates.

Case 1: a = b. In this case, a = b, so the algorithm returns right away and terminates.
Case 2: a 6= b. The algorithm calls GCD on input a′, b′ that satisfies the preconditions, and

a′ + b′ < a + b (one of a or b is reduced by at least 1 to obtain a′ and b′). The recursive call then
returns by the induction hypothesis, and the algorithm returns right after that happens.

The completes the proof that the algorithm terminates, and also concludes the proof of correct-
ness of the algorithm.

When we prove partial correctness, we don’t argue that the program actually halts at some
point. We can take that as an assumption since we only prove the implication “if the program
halts, the returned value is correct” when we prove partial correctness. For this reason, we can
prove partial correctness of a program that doesn’t always halt. For example, if our specification
were to allow a = 0 or b = 0, the call GCD(a,b-a) would be the same as the call GCD(a,b), so GCD

would just be calling itself over and over again. But since both inputs to the recursive call satisfy
the preconditions in this case, Condition (∗) gives us the postconditions, i.e., the result returned
from the recursive call GCD(a,b-a) is correct. The result we return is then correct too. However,
this argument doesn’t tell us that we got closer to the solution by returning a correct answer since
Condition (∗) assumes that the program terminates.

Finally, we remark that the kind of recursion used to describe function GCD is called tail recur-

sion. In tail recursion, we only make a recursive call at the very end before we return, and return
the value returned by the recursive call.

11.1.2 Grade School Multiplication Algorithm

Now we prove correctness of the recursive version of the grade school multiplication algorithm.
This becomes more complicated because we need some more computation in order to produce the
result after the recursive calls return.

Recall that we wrote b = 2q + r where q = ⌊b/2⌋ and r ∈ {0, 1} is the remainder after dividing
b by 2. Now multiply both sides by a to get ab = 2aq + ar. The right-hand side expresses the
multiplication ab as three simpler multiplication problems and one addition. See the notes from
previous lecture for more detail on this. We just restate the algorithm here.
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Algorithm MULT(a,b)

Input: a, b ∈ N

Output: a · b

(1) if b = 0 then return 0
(2) if b is even then return 2 · MULT(a, ⌊b/2⌋)
(3) else return 2 · MULT(a, ⌊b/2⌋)+ a

First let’s prove partial correctness of this algorithm. Like in the previous proof, the proof
structure follows the structure of the algorithm.

Case 1: b = 0. When b = 0, ab = 0 as well, and the program returns zero correctly in this case.
Case 2: b 6= 0. In this case there are two subcases depending on the parity of b.
Case 2.1: b is even. Then

ab = 2 · a ·
b

2
= 2 ·

(

a ·

⌊

b

2

⌋)

. (11.1)

Note that a and ⌊b/2⌋ satisfy the preconditions, so MULT(a, ⌊b/2⌋) returns a·⌊b/2⌋ by Condition (∗).
We multiply the returned value by 2 and return the result, which is ab by (11.1).

Case 2.2: b is odd. Then

ab = a ·

(

2

⌊

b

2

⌋

+ 1

)

= 2 ·

(

a ·

⌊

b

2

⌋)

+ a. (11.2)

Note that a and ⌊b/2⌋ satisfy the preconditions, so MULT(a, ⌊b/2⌋) returns a·⌊b/2⌋ by Condition (∗).
We multiply the returned value by 2, add a to the result, and return the result of the addition,
which is ab by (11.2).

This completes the proof of partial correctness.

We prove termination by strong induction on b. When b = 0, our program returns right away,
which proves the base case. For the induction step, assume the algorithm terminates whenever the
second argument is at most b. Now consider a call to MULT with b + 1 as the second argument.
The recursive call to MULT happens with ⌊(b+ 1)/2⌋ in this case. Note that ⌊(b+ 1)/2⌋ ≤ b, so the
induction hypothesis implies that the recursive call terminates. After receiving the return value
from the recursive call, our call to MULT with b + 1 performs a few mathematical operations and
then returns as well. This completes the proof of termination.

We could also prove correctness of the recursive algorithm for computing the n-th Fibonacci
number. We leave this to the reader, and instead focus on a new example, the towers of Hanoi
problem.

11.1.3 Towers of Hanoi

In the towers of Hanoi problem, we have three pegs labeled A, B and C, and n disks of increasing
size which are stacked on peg A with the largest disk on the bottom and the smallest disk on top.
See the initial setup for n = 4 in the first frame in Figure 11.1. The goal is to bring all disks from
peg A to peg C. In each step, we can move one disk from one peg to another peg, but we can never
move a larger disk on top of a smaller disk. See Figure 11.1 for a sequence of moves that achieves
this when n = 4.

We come up with a recursive procedure that tells us what sequence of moves to make. We want
to reduce the problem into subtasks involving fewer disks. A possible subproblem could be moving

3



Lecture 11: Recursion 11.1. Correctness of Recursive Programs

1

A B C

2

A B C

3

A B C

4

A B C

5

A B C

6

A B C

7

A B C

8

A B C

9

A B C

10

A B C

11

A B C

12

A B C

13

A B C

14

A B C

15

A B C

16

A B C

Figure 11.1: Solving the towers of Hanoi problem with 4 disks.
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the top n− 1 disks from peg A to peg B using only legal moves. Assuming this is possible, we can
now move the largest disk from peg A to peg C, and then solve another subproblem involving n−1
disks to move the n− 1 disks from peg B to peg C. The sequence of moves in Figure 11.1 achieves
this for n = 4. Frames 1–8 show how to get the first three disks from peg A to peg B. Going from
frame 8 to frame 9 moves the largest disk in its place. Finally, frames 9–16 show how to move all
the remaining disks from peg B to their final destination.

We describe the strategy as function TOWERS. Observe that what’s happening is that we are
building a solution to a larger problem out of solutions to smaller versions of the problem.

Algorithm TOWERS(n,A,B,C)

Input: n ∈ N, n disks in order on top of peg A, pegs B and C
Output: Sequence of moves that brings those disks to the top of C, using B as intermediate

peg.
(1) if n = 0 then return
(2) else return TOWERS(n-1,A,C,B)

Move top disk of A to C
TOWERS(n-1,B,A,C)

We leave the full proof of correctness for discussion sessions next week, and only give an outline.
For partial correctness, we argue we don’t violate any of the conditions for validity of moves. The
key is that when we look at the subproblem of moving the top n − 1 disks, the largest disk stays
put and we can move any disk on top of it without risking that the move is invalid. The proof of
termination goes by induction on the number of disks.

11.1.4 Counting Pairs

Our last application of recursion today is a procedure for counting the number of unordered pairs
that can be formed by picking two out of n elements. We have n options for the first element in
a pair, and (n − 1) for the second element since we can’t pick the same element twice. Thus, the
number of ordered pairs is n(n − 1). But we only want to count the number of unordered pairs,
and right now we are counting every such pair twice because each element of a pair can be the one
that’s picked first. Thus, we divide by 2 to get n(n− 1)/2 unordered pairs.

Now let’s design a recursive algorithm that counts these pairs. Write the n elements in a row,
and split the row into two, one consisting of k elements and one consisting of n−k elements. There
are now three ways in which we can pick a pair consisting of two elements. We can pick both
elements from the first row, or we can pick them both from the second row, or we can pick one
from the first row and one from the second row.

Let PAIRS(n) be the number of pairs of two out of n elements. Clearly, PAIRS(1) = 0. Now
let’s find a general expression for n ≥ 2. There are PAIRS(k) pairs formed using just the elements
of the first row, and PAIRS(n − k) pairs formed using the elements of the second row. To get a
pair consisting of one element from the first row and one element from the second row, we have k
options for picking an element from the first row and n − k options for picking an element of the
second row, for a total of n(n − k) pairs. Hence, the total number of ways to pick 2 elements out
of n is PAIRS(k) + PAIRS(n− k) + n(n− k).

This should remind you of the unstacking game we saw earlier. There, we showed that every
strategy gives you the same score. Our recursive definition of PAIRS() provides an alternative
explanation for why it is true. The number of unordered pairs formed by picking two elements out
of n is unique.
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