
CS/Math 240: Introduction to Discrete Mathematics 3/3/2011

Lecture 13 : Program Analysis

Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený

DRAFT

Last time we started discussing program analysis. We used recurrence relations to analyze the
running times of various, mostly recursive, programs. We continue with this today.

13.1 Euclid’s Algorithm

Today we analyze Euclid’s algorithm for finding the greatest common divisor of two integers. You
proved correctness of the iterative version of this algorithm on the fourth homework. Today we
focus on the recursive version of this algorithm. As you can see below, the recursive description is
much more succinct than the iterative description.

Algorithm Euclid(a, b)

Input: a, b ∈ N, a ≤ b, b 6= 0
Output: gcd(a, b)

(1) if a = 0 then return b
(2) r ← b− ⌊b/a⌋ · a
(3) return Euclid(r, a)

We first argue that the recursive algorithm Euclid correctly finds greatest common divisors,
and then analyze its running time.

13.1.1 Correctness of the Algorithm

For partial correctness, we assume as our induction hypothesis that all recursive calls whose inputs
satisfy the preconditions produce the correct output, and show that this implies the algorithm is
going to return the correct result as well, provided it terminates. There are two cases to consider.

Case 1: a = 0. The algorithm returns b in this case, which is the correct answer because every
integer divides zero, and b is the largest divisor of b.

Case 2: a 6= 0. The algorithm calls Euclid(r, a) where r is the remainder of b after division
by a, so 0 ≤ r < a. Because 0 ≤ r < a, the input (r, a) satisfies the preconditions of Euclid, and
Euclid(r, a) returns gcd(r, a) by the induction hypothesis. We also know by a result you proved
on the fourth homework that gcd(r, a) = gcd(a, b), so the recursive call returns gcd(a, b) as desired.

For termination, observe that in each recursive call, the value of the first argument to Euclid

decreases because on input (a, b), the recursive call is with input (r, a) and r < a. Since the first
argument to Euclid is a non-negative integer, it becomes zero after at most a recursive calls, and
the algorithm halts at that point.
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13.1.2 Analysis of the Algorithm

Now that we know the algorithm works, let’s analyze its running time. Our measure of complexity
is the number of recursive calls on input (a, b), which we call R(a, b). By an argument from the
proof of correctness, we have R(a, b) = 1 + R(r, a) where r is the remainder of b after dividing by
a.

We have an upper bound R(a, b) ≤ a from the proof of termination, which roughly matches
the bound R(a, b) ≤ max(a, b) we found for the version of the algorithm from last time. As we see
today, Euclid actually performs much better than the algorithm from last time.

Notice that R(a, b) is different for different a, b ≤ n. For example, R(0, 5) = 0, but R(2, 5) = 2.
This makes reasoning about R(a, b) difficult, so we define some quantities in terms of the maximum
of a and b (call this maximum n) instead. The quantity R′(n) is similar to the one we used in the
analysis of last lecture’s algorithm for finding greatest common divisors. It is the largest number
of recursive calls made by Euclid on input (a, b) with a, b ≤ n. Today’s expression for R′(n) is
simpler because we know which of the two inputs is larger.

R′(n) = max ({R(a, b) | a, b ∈ N, a ≤ b, b 6= 0, b ≤ n})

Unfortunately, finding an expression even for R′(n) becomes difficult with this algorithm, so we
turn things around and ask what is the smallest value of n for which we can get an input (a, b),
with a, b ≤ n, on which Euclid makes k recursive calls. To that end, we define N(k) below.

N(k) = min
(

{n ∈ N | R′(n) ≥ k}
)

Let’s compute N(k) for some values of k to get a sense of how the quantity changes with k.
We have N(0) = 1. An example of an input (a, b) with a, b ≤ 1 on which Euclid makes no

recursive calls is (0, 1). On this input, we have a = 0, so the algorithm returns right away without
making any recursive calls. Note that N(0) cannot be zero because (0, 0) is not a valid input to
the algorithm.

Next, N(1) = 1. Consider the input (1, 1). On this input, Euclid makes a recursive call with
(0, 1) as the input, and that call returns right away. We cannot have N(1) = 0 for the same reason
why N(0) 6= 0.

We have N(2) = 3. For example, on input (2, 3), the inputs to subsequent recursive calls are
(1, 2) and (0, 1). We now justify that N(2) 6= 2. On each of the inputs (0, 2), (1, 2), (2, 2), we make
at most one recursive call. On input (0, 2), the algorithm returns right away. On input (1, 2), the
only recursive call is with input (0, 1), and on input (2, 2), the only recursive call is with input
(0, 2). Finally, we have discussed all the inputs with b ≤ 1, and we saw that on those inputs there
is at most one recursive call.

We now claim N(3) ≤ 5. This is because on input (3, 5), the first recursive call is with input
(2, 3) and we saw that it took two more recursive calls to find gcd(2, 3). One can actually show
that N(3) = 5. For this, we’d have to argue about all inputs with b ≤ 4. We already argued this
for all inputs with b ≤ 2, so we know R′(1), R′(2) < 3. We also argued about the input (2, 3). We’d
still need to argue about the inputs (0, 3), (1, 3), (3, 3), (0, 4), (1, 4), (2, 4), (3, 4), and (4, 4) to find
that R′(3) = R′(4) = 2. We leave the verification of this fact to the reader.

We also have N(4) = 8. We don’t make the argument now and present a more general argument
in a moment. For now, just observe that if we call Euclid with input (5, 8), then the first recursive
call is with input (3, 5), and we know it takes three more recursive calls to get the answer on that
input.

We discussed the values of N(k) for a few first values of k. Now let’s argue in more generality.
Suppose that Euclid takes k recursive calls on input (a, b) and that k ≥ 1. In this case a 6= 0,
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and the algorithm recursively calls Euclid(r, a) where r = b− ⌊b/a⌋ · a is the remainder of b after
dividing by a. The call Euclid(r, a) takes k − 1 recursive calls because k = R(a, b) = 1 + R(r, a).
Thus, a ≥ N(k − 1) because N(k − 1) is the smallest value of the second argument to Euclid on
which it makes k − 1 recursive calls.

By the same token, r 6= 0 if k ≥ 2. On input (r, a), the second argument of the next recursive
call will be r. From that point on, it takes k− 2 recursive calls to get the answer, so r ≥ N(k− 2).
Now b = ⌊b/a⌋ · a + r, and we know r ≥ N(k − 2), a ≥ N(k − 1), and ⌊b/a⌋ ≥ 1. Therefore,
b ≥ N(k − 1) +N(k − 2), so we’ve shown that

N(k) ≥ N(k − 1) +N(k − 2). (13.1)

Observe that our claim that N(4) = 8 = N(3) +N(2) is consistent with (13.1).
We now show that the inequality (13.1) is actually an equality. To turn (13.1) into an equality,

we need to show an input with a, b ≤ N(k−1)+N(k−2) on which Euclid makes k recursive calls.
For example, when k = 4, (5, 8) is one such input.

Claim 13.1. N(k) = N(k − 1) +N(k − 2) for k ≥ 4, and (a, b) = (N(k − 1), N(k)) realizes N(k)
for k ≥ 3.

By “(a, b) realizes N(k)” we mean that Euclid makes k recursive calls on input (a, b). Also
recall that N(0) = N(1) = 1, N(2) = 3, and N(3) = 5. A last remark before the proof is that
N(k) > 0 for all k ∈ N ad that N(k) ≤ N(k + 1) for all k ∈ N.

Proof of Claim 13.1. We prove the claim by induction on k.
For the base case we consider k = 3. We have N(k − 1) = N(2) = 3 and N(k) = N(3) = 5.

Recall that the input (N(k − 1), N(k)) = (3, 5) indeed requires k = 3 recursive calls.
We don’t need to prove the other part of Claim 13.1 for k = 3 because that part of the claim

only mentions values of k that are at least 4. Thus, the base case is proved.

For the induction step, let k ≥ 3, and consider the input (a, b) = (N(k), N(k) +N(k − 1)). If
we give (a, b) to Euclid as input, it makes a recursive call with input (r, a) where r = b−⌊b/a⌋ · a.
Note that ⌊N(k)+N(k−1)

N(k) ⌋ = ⌊N(k)
N(k) +

N(k−1)
N(k) ⌋ = 1 because N(k)/N(k) = 1 and N(k − 1) < N(k).

To see the latter inequality, recall N(k) = N(k − 1) +N(k − 2) by the induction hypothesis, and
N(k − 2) ≥ 1. Hence, r = b− a = N(k − 1).

It follows that Euclid(a, b) makes a call to Euclid(N(k−1), N(k)). Our induction hypothesis
says that the call to Euclid on input (N(k−1), N(k)) takes k recursive calls, which means the call
to Euclid on input (a, b) = (N(k), N(k) +N(k − 1)) takes k + 1 recursive calls. This shows that
N(k + 1) ≤ N(k) +N(k − 1).

Earlier, we argued inequality (13.1) which says that N(k+1) ≥ N(k)+N(k−1). It follows that
N(k+1) = N(k)+N(k−1), and our input (a, b) that realizes N(k+1) is actually (N(k), N(k+1)).
Hence, the proof is complete.

Finding the statement of Claim 13.1 is a result of our examination of the first few values of
N(k) and our subsequent analysis that led us to (13.1). Again we point out that it takes some
ingenuity and playing with the problem to come up with this.

Claim 13.1 gives us the following recurrence for N(k): N(0) = N(1) = 1, N(2) = 3, N(3) = 5,
and N(k) = N(k − 1) + N(k − 2) for k ≥ 4. This looks like the recurrence for the Fibonacci
sequence. We compare the two in Figure 13.1.

We see from Table 13.1 that N(k) = Fk+2 for k ≥ 3.
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k 0 1 2 3 4 5 6 7

N(k) 1 1 3 5 8 13 21 34
Fk n/a 1 1 2 3 5 8 13

Fk+2 1 2 3 5 8 13 21 34

Figure 13.1: Comparing N(k) with the Fibonacci sequence.

Recall that our goal is to find the complexity of the algorithm Euclid. So far we have only
found a recurrence for a related quantity, N(k). Let’s start by finding an expression for N(k) that
is not a recurrence and then translate that to an expression for R′(n).

Recall from an earlier lecture that

Fn =
1√
5
(̺n − (1− ̺)n) , ̺ =

1 +
√
5

2
.

For large n, Fn is “roughly” ̺n (we will discuss what we mean by “roughly” next time), so N(k)
is roughly ̺k+2. It follows that Euclid makes at most k + 2 recursive calls on input (a, b) with
a ≤ b ≤ ̺k+2. So pick b = ̺k+2. Then log̺(b) is roughly K, and the number of recursive calls
made by Euclid(a, b) is, therefore, roughly at most log̺ b. This is a great improvement over last
time’s analysis where the number of recursive calls was bounded by the value of the larger input
as opposed to the logarithm of that value.
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