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Lecture 14 : Asymptotic Analysis

Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený

DRAFT

Last two lectures, we analyzed the running times of various algorithms we’ve seen throughout
the course. As we have found out, getting exact results was easy for some algorithms, but took
a considerable amount of effort for some other algorithms. It took us one full lecture to analyze
the number of recursive calls made by one particular implementation of Euclid’s algorithm, and
even then we did not obtain an exact figure on the number of recursive calls. Moreover, these
algorithms were all fairly simple, so you can imagine how hard it would be to do an exact analysis
of a more complicated algorithm. Today we introduce an analysis technique that allows for simpler
arguments at the cost of a negligible loss in precision.

14.1 Motivation for Asymptotic Analysis

We now review some of the results from last two lectures and complete the analysis of Euclid’s
algorithm. We first show the results that were easy to obtain, and give the harder-to-get results
later. In fact, the last result won’t even be exact, but will be “good enough”.

In Section 14.2 we present a technique for obtaining “good enough” results, asymptotic analysis.
We also specify what “good enough” means in the context of program analysis, and explain why
“good enough” results are sufficient.

14.1.1 Earlier Results

14.1.1.1 Towers of Hanoi

For the towers of Hanoi problem, we defined M(n) to be the number of moves needed for the
instance of the problem with n disks. We found the recurrence M(n) = 2M(n − 1) + 1, with
M(0) = 0. We solved this recurrence to get M(n) = 2n − 1.

14.1.1.2 Binary Multiplication

Next, we analyzed the binary multiplication algorithm. There we defined S(a, b) to be the number
of bit shifts on input a, b. We had the recurrence S(a, b) = S(a, ⌊b/2⌋) with S(0) = 0. The solution
to this recurrence was S(a, b) = ⌊log2 b⌋+ 1.

A note on logarithms: Let us agree from now on that when we say log, we mean the logarithm

with base 2, and drop the subscript. With this convention, the expression for S(a, b) is ⌊log b⌋+ 1.

14.1.1.3 Simple GCD Algorithm

We also analyzed a simple algorithm for finding greatest common divisors. Our measure of com-
plexity there was R(a, b), the number of recursive calls made on input a, b. However, we did not
compute R(a, b). This is actually hard to do.
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Instead, we focused on the largest number of recursive calls made on input (a, b) with a, b ≤ n.
We called this quantity R′(n). We found the recurrence R′(n) = R′(n− 1) + 1 with R′(1) = 0, and
found the solution R′(n) = n− 1.

Keep in mind that R′(n) is only an upper bound and not an exact expression for R(a, b) with
a, b ≤ n. There are some inputs a, b with a, b ≤ n and R(a, b) = 0.

Even tor this simple algorithm, we gave up on finding the exact complexity, and only found an
upper bound in terms of the largest of the two inputs. The situation became even more complicated
in the analysis of another algorithm for finding greatest common divisors.

14.1.2 Completing the Analysis of Euclid’s Algorithm

We restate the recursive version of Euclid’s algorithm below for the sake of completeness.

Algorithm Euclid(a, b)

Input: a, b ∈ N, a ≤ b, b 6= 0
Output: gcd(a, b)

(1) if a = 0 then return b
(2) r ← b− ⌊b/a⌋ · a
(3) return Euclid(r, a)

We analyzed this algorithm last lecture, and went even more off track than in the analysis of
the simple algorithm for computing greatest common divisors. We defined the quantity N(k) as
the smallest value of n such that there is an input a, b with a, b ≤ n on which Euclid makes k
recursive calls. We found the recurrence N(k) = N(k − 1) +N(k − 2) for k ≥ 4, and deduced that
N(k) = Fk+2, the (k + 2)nd Fibonacci number, for k ≥ 2. This was a nontrivial result and took
us almost an entire lecture to derive. We then remarked that the number of recursive calls was
“roughly” log(b). We now give an argument for this.

We know that if (a, b) is a valid input such that a, b ≤ N(k), Euclid(a, b) makes at most k
recursive calls. So, on input (a, b), Euclid makes at most k recursive calls, where k is the smallest
integer for which a, b ≤ N(k). Now we would like to figure out what k is given (a, b). Since a ≤ b,
we can simplify this question, and, instead, ask what is the smallest k such that b ≤ N(k).

Recall that

Fn =
̺n − (1− ̺)n√

5
, where ̺ =

1 +
√
5

2
.

We said N(k) = Fk+2, so

b ≤ ̺k+2 − (1− ̺)k+2

√
5

. (14.1)

As a first step towards a bound on k, we rewrite (14.1) as
√
5b ≤ ̺k+2 − (1− ̺)k+2.

We claim (1− ̺)k+2 ≤ ̺k+2. To see this, recall ̺ ≈ 1.62, so 1− ̺ ≈ −0.62. Now raising ̺ to a
high power gives a giant number, whereas raising 1−̺ to a high power gives a number that is close
to zero. Thus, we further rewrite (14.1) as

√
5b ≤ 2̺k+2, and

√
5b/2 ≤ ̺k+2. Now take logarithms

of both sides to get

log(
√
5/2) + log b ≤ (k + 2) log(̺) = k log(̺) + 2 log(̺). (14.2)

Note that ̺ >
√
5/2, so 2 log(̺) > log(

√
5/2). Then (14.2) holds if log b ≤ k log(̺), and

k ≥ log b

log ̺
. (14.3)
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This tells us that the smallest integer k for which a, b ≤ N(k) is greater than c log(b) where
c = 1/ log(̺). So pick k to be the smallest integer that satisfies (14.3). Hence, k is roughly c log(b),
and R′(b) is roughly log(b).

14.2 Asymptotic Analysis

We have finally obtained some bound on the number of recursive calls made by Euclid. One of the
tricks we used to obtain the final result was to consider a looser inequality. For example, the bound
(1− ̺)k ≤ ̺k is an immense overestimate, but it was sufficient for obtaining a good bound on the
number of recursive calls. This is because there already was another term of ̺k in the expression
in (14.1), so our overestimate of the lower order term (1− ̺)n by the dominant term ̺n (or higher
order term) only caused a loss of a factor of 2 in the analysis.

A loss of a factor of 2 is negligible compared to log(b) which appeared in our final bound on
k. A factor of 2 is easy to overcome by giving the task to a couple different computers in parallel
or to a faster computer that runs twice as fast, for example. On the other hand, it may be harder
to find a computer that runs log(b) times as fast for a large b, or find O(log(b)) computers (not
to mention that there is some overhead involved in parallel computing). This is why a loss of
a constant factor is “good enough”, but any other loss is not because it may blur the difference
between vastly different complexities. This is one of the ideas behind asymptotic analysis: we focus
on first order terms, and ignore negligible terms as well as multiplication by constants because they
are a secondary issue compared to the first order terms.

Another aspect of asymptotic analysis is that it is concerned only about large inputs. The
differences between complexities of two algorithms may not be noticeable on small inputs, and
any computer could run the two algorithms with different, but still small running times in a short
period of time. But when the inputs get larger, the slower algorithm may not have a chance of
finishing before the end of the universe, even on a supercomputer, whereas a slow computer could
still execute the faster algorithm in a few days, or perhaps even seconds.

Observe the different complexities of the two algorithms for computing greatest common divi-
sors. The number of recursive calls made by Euclid’s algorithm grows much slower with the input
size than the number of recursive calls made by the simple algorithm. The two complexities, as
functions of the input size, are not different merely by a constant factor. Their first order terms are
very different. One grows logarithmically whereas the other one grows linearly, so a good asymp-
totic analysis can show that Euclid’s algorithm is faster than the simple algorithm for computing
greatest common divisors.

14.2.1 Terminology and Notation

When doing asymptotic analysis, we are interested in the relative growth of two functions f, g from
N to R>0, where by R>0 we mean the positive real numbers. We think of one or both of these
functions as running times of programs. If f represents the running time of a program P , f(n)
tells us how many elementary operations P takes on input (of length) n.

Now let’s forget about the fact that f and g represent running times of programs on various
inputs, and set down some notation and terminology that is generally applicable. The next section
uses what we develop now as a tool for analyzing programs.

We start with a very restrictive notion of equivalence.
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Definition 14.1. Given f : N→ R>0 and g : N→ R>0, we say f(n) and g(n) are asymptotically
equivalent if

(∀ǫ ∈ R>0)(∃N ∈ N)(∀n ≥ N) 1− ǫ ≤ f(n)

g(n)
≤ 1 + ǫ. (14.4)

We use the notation f(n) ∼ g(n) to denote that f(n) and g(n) are asymptotically equivalent.

In words, as n increases, the ratio of f(n) and g(n) approaches 1. Another way to formulate
Definition 14.1 is limn→∞ f(n)/g(n) = 1.

Definition 14.1 captures one of the goals we have set for ourselves. It characterizes the behavior
of two functions as their inputs get large.

Example 14.1: Fn ∼ ̺n√
5
.

Consider f(n) = Fn and g(n) = ̺n√
5
. Recall that Fn = ̺n−(1−̺)n√

5
where ̺ = (1 +

√
5)/2.

Now let’s look at the ratio of f and g.

f(n)

g(n)
=

̺n−(1−̺)n√
5

̺n√
5

=
̺n − (1− ̺)n

̺n
= 1− (1− ̺)n

̺n
= 1−

(

1− ̺

̺

)n

. (14.5)

Notice that (1− ̺)/̺ < 1, so raising it to a high power yields a number that is close to zero. Thus,
as n increases, the term [(1− ̺)/̺]n gets closer and closer to zero, which means (14.5) gets closer
and closer to one.

To show that f(n) ∼ g(n), consider ǫ ∈ R>0, and pick an N such that [(1− ̺)/̺]N < ǫ. Since
1 doesn’t change with n, and [(1− ̺)/̺]n gets closer to zero as n increases, we get that f(n)/g(n)
is bounded between 1− ǫ and 1 + ǫ for all n ≥ N . Thus, f(n) ∼ g(n). ⊠

Example 14.2: Consider f(n) = 12n2 + 109n+ 1
n
and g(n) = 12n2. Then f(n) ∼ g(n).

To see this, observe that as n increases, 12n2 grows much faster than the other terms in f(n).
Thus, when n is large, 109n becomes negligible compared to 12n2 even though the coefficient in
front of n may look like a giant number. A common expression for this is that 12n2 dominates

109n. Similarly, 12n2 dominates 1
n
.

Now we argue more formally. We can write

f(n)

g(n)
=

12n2 + 109n+ 1
n

12n2
= 1 +

109

12
· 1
n
+

1

12
· 1

n3
.

Since both the terms 109/12n and 1/12n3 decrease towards zero as n increases, we can find an N
for which Definition 14.1 is satisfied using the same argument as in the previous example.

Also notice that f(n) 6∼ n2. The ratio of f(n) and n2 approaches 12 as n goes to infinity, and
the ratio won’t get close to one. ⊠

Example 14.3: Fn 6∼ 12n2.
The Fibonacci sequence grows much faster than the quadratic 12n2. Let f(n) = Fn and

g(n) = 12n2. For small values of n, we actually have f(n) < g(n), but that quickly changes
and f(n) starts growing much faster than g(n). One way to see this is that f(n) increases by a
factor of ̺ if n increases by 1, whereas 12n2 increases by a factor that is close to 1 (just write out
12(n+ 1)2/12n2 to see this) if n increases by 1. ⊠

We see from the examples above that Definition 14.1 accomplishes some of our goals, but not all
of them. It allows us to capture the behavior of functions as their inputs grow. However, as we saw
in Example 14.2, there is still dependence on constant factors. In particular, we saw f(n) ∼ 12n2,
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but f(n) 6∼ n2. Since f(n), 12n2, and n2 grow like quadratics, we would like them to be similar, but
asymptotic equivalence doesn’t allow that. The next definition fixes this shortcoming of asymptotic
equivalence.

Definition 14.2 (Big Theta). Given f : N→ R>0 and g : N→ R>0, we say f(n) is Theta of g(n)
if

(∃c, d ∈ R>0)(∃N ∈ N)(∀n ≥ N) c ≤ f(n)

g(n)
≤ d. (14.6)

We write f(n) = Θ(g(n)) to denote that f(n) is Theta of g(n).

Definition 14.2 no longer requires f and g to approach each other in the limit. Instead, it
requires that their ratio be bounded above and below by some constants as n gets large. This
allows us to ignore constant factors because the Θ notation “absorbs” them.

Let’s see how the examples we used for asymptotic equivalence change. First, if f(n) ∼ g(n),
then certainly f(n) = Θ(g(n)). To see this, pick ǫ = 1/2 (we can pick any ǫ > 0 to make this
argument work; ǫ = 1/2 is just an example). Since f(n) ∼ g(n), there is an N such that for
all n ≥ N , 1/2 ≤ f(n)/g(n) ≤ 3/2. So take that N , and pick c = 1/2 and d = 3/2 to show
f(n) = Θ(g(n)).

Example 14.4: By the previous paragraph, Fn = Θ(̺n/
√
5) and 12n2 + 109n+ 1/n = Θ(12n2).

In addition, we also have 12n2 + 109n + 1/n = Θ(n2) because we can pick N = 1, c = 12 and
d = 109 + 13 in order to satisfy Definition 14.2. Another option is c = 12, d = 13, N = 109. This
second choice illustrates that we only care about larger values of n in asymptotic analysis. It also
allowed us to pick c and d that are closer to each other.

Finally, Fn 6= Θ(12n2) because Fn grows exponentially, and we cannot bound the ratio of Fn

and 12n2 by any constant. ⊠

We may also be interested in only one of the bounds in (14.6). For example, if we want to
guarantee that a program terminates within a number of steps that is at most some function of the
input, we only care about the upper bound. On the other hand, if we want to prove to someone
that the number of steps is at least some function of the input, we only care about the lower bound.
Thus, we make the following two definitions.

Definition 14.3 (Big Oh). Given f : N→ R>0 and g : N→ R>0, we say f(n) is Oh of g(n) if

(∃d ∈ R>0)(∃N ∈ N)(∀n ≥ N)
f(n)

g(n)
≤ d. (14.7)

We write f(n) = O(g(n)) to denote that f(n) is Oh of g(n).

Definition 14.4 (Big Omega). Given f : N → R>0 and g : N → R>0, we say f(n) is Omega of
g(n) if

(∃c ∈ R>0)(∃N ∈ N)(∀n ≥ N) c ≤ f(n)

g(n)
. (14.8)

We write f(n) = Ω(g(n)) to denote that f(n) is Omega of g(n).

Observe that if f = Θ(g), then f = O(g) and f = Ω(g). This follows because conditions (14.7)
and (14.8) are weaker than condition (14.6). Also, if both f = O(g) and f = Ω(g) hold, then
f = Θ(g) because combining the inequalities from (14.7) and (14.8) gives us the inequality (14.6).

Example 14.5: By the previous paragraph, we have Fn = O(̺n/
√
5) and Fn = Ω(̺n/

√
5). We also

get 12n2+109n+1/n = O(12n2) and 12n2+109n+1/n = Ω(12n2), as well as 12n2+109n+1/n =
O(n2) and 12n2 + 109n+ 1/n = Ω(n2).
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Since Fn grows way faster than 12n2, Fn 6= O(12n2), but it is true that Fn = Ω(12n2). Along
the same vein, 12n2 = O(Fn) and 12n2 6= Ω(Fn). ⊠

Now we have enough notation, so let’s see its use in program analysis.

14.2.2 Asymptotic Analysis of Euclid’s Algorithm

The analysis of last lecture combined with Section 14.1.2 proved the following theorem.

Theorem 14.5. The number of recursive calls made by Euclid on input (a, b) is O(log b).

It took us an entire lecture to prove this theorem. We now show a simpler argument that proves
Theorem 14.5. This should serve as an example of the fact that asymptotic analysis is much easier
to do than exact analysis.

We need one small result before we give a shorter proof of Theorem 14.5.

Claim 14.6. After line 2 of Euclid executes, r ≤ b/2.

Proof. We argue by cases.
Case 1: a > b/2. In this case ⌊b/a⌋ = 1, which gives us r = b−⌊b/a⌋ · a = b− a. Thus, we have

r = b− a, and since a > b/2, r < b/2.
Case 2: a ≤ b/2. Recall that dividing by a produces a remainder that is less than a. Since r is

the remainder after dividing b by a, r ≤ a ≤ b/2.

And now we are ready for a shorter proof of Theorem 14.5.

Proof of Theorem 14.5. Consider the first two recursive calls made by Euclid on input (a, b). The
first argument in the first recursive call is a′ ≤ b/2, and the second argument is b′ = a. The
recursive call Euclid(a′, b′) makes a second recursive call, with first argument a′′ ≤ b′/2 ≤ a/2,
and second argument b′′ = a′ ≤ b/2. We see, therefore, that after two recursive calls, the first and
the second arguments to Euclid are at most half their initial values.

Recursion ends as soon as the first argument goes below 1 because it’s zero in that case. After
2k recursive calls, the first argument is at most a/2k, which will be less than 1 if a/2k < 1, or, in
other words, if k > log(a). We will have k > log(a) if k > log(b) because b ≥ a. And now we see
that after 2 log(b) recursive calls, the first argument is less than one, so it’s zero, and the chain of
recursive calls ends.
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