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DRAFT

Last time we finished the discussion of digraphs and started talking about graphs. A graph is
like a digraph, except edges don’t have direction. Today we focus on graphs that can be drawn in
a plane without any edges crossing, and then talk about what it means for two graphs to be the
same.

19.1 Planar Graphs

We have been drawing graphs on a piece of paper or the blackboard. One can ask whether we can
draw a particular graph so that no two lines representing two different edges intersect.

Definition 19.1. A graph is called planar if it can be drawn in a plane (such as a piece of paper)
without any two edges intersecting.

Intuitively, if a graph has a lot of edges, we should not be able to draw it in a plane. Thus, we
conjecture that some graphs are not planar. We will make this more precise in a moment. First
let’s see a few examples.

Example 19.1: The complete graph K4 consisting of 4 vertices and with an edge between every pair
of vertices is planar. Figure 19.1a shows a representation of K4 in a plane that does not prove K4

is planar, and 19.1b shows that K4 is planar. The graphs K5 and K3,3 are nonplanar graphs. No
matter how we draw them in a plane, some pair of edges will intersect. We show K5 (the complete
graph on five vertices) if Figure 19.1c, and we show K3,3r (the complete bipartite graph with 3
vertices on each side and all possible edges between vertices on opposite sides) in Figure 19.1d.

⊠

It turns out that in some sense (which we will specify soon), every nonplanar graph contains
either K5 or K3,3. In other words, K5 and K3,3 are the two smallest possible nonplanar graphs.
We start with a definition.

Definition 19.2. Consider a drawing of a connected planar graph in a plane. A face of a planar
graph is a part of the plane delimited by a cycle such that no edges are drawn inside of that cycle
in the drawing.

In other words, take any point P in the plane. The set of all points to which it is possible to
draw a curve from P without crossing an edge is a face. For example the planar graph K4 from
Figure 19.1b has 4 faces.

Example 19.2: Consider the graph in Figure 19.2. It has four faces. The three faces inside are
shaded. There is a fourth face on the outside of the graph, and is not shaded. The inside faces are
delimited by the cycles (i) 1, 2, 6, 5, 1, (ii) 2, 3, 7, 6, 2, and (iii) 3, 4, 8, 7, 3. The outside face has the
cycle 1, 2, 3, 4, 8, 7, 6, 5, 1 as its boundary.

Pick any point P that is in one of the shaded regions (or on the outside) in Figure 19.2. We
can draw a curve from P to any point inside the region with the same shading without crossing
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(a) The planar graph K4 drawn with
two edges intersecting.

(b) The planar graph K4 drawn with-
out any two edges intersecting.

(c) The nonplanar graph K5. (d) The nonplanar graph K3,3

Figure 19.1: Some examples of planar and nonplanar graphs.

edges, but it is impossible to draw a curve from P to a point in a region with a different shading
than P ’s region. We draw a curve in Figure 19.2 that shows points P and Q are in the same face.
Here we also point out that the curves we draw can be arbitrarily complicated.

Not every cycle delimits a face, but every cycle has a face inside of it. For example the cycle
1, 2, 3, 7, 6, 5, 1 does not delimit any face, but has two faces inside of it. ⊠

1 2 3 4

5 6 7 8

P

Q

Figure 19.2: A graph with four faces. The curve from point P to point Q does not cross any edges,
so it shows that P and Q belong to the same face.

We now relate the number of vertices, edges, and faces using one formula. The following theorem
is known as Euler’s formula.

Theorem 19.3. Let G = (V, E) be a connected simple planar graph, and let F be the set of faces
of G. Then

|V | − |E| + |F | = 2. (19.1)

We prove Theorem 19.3 by induction. Here we remark that we have two options what to induct
on: the number of vertices and the number of edges. We have been using the former for all inductive
proofs about graphs so far. This is the first time we induct on the number of edges.

Proof of Theorem 19.3. For the base case, consider a graph G with no edges. Since there are no
edges, any drawing of that G in the plane has just one face, namely the entire plane. Furthermore,
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Lecture 19: Graphs 19.1. Planar Graphs

the graph has only one vertex because otherwise it would not be connected. Therefore, we have
|V | − |E| + |F | = 1 − 0 + 1 = 2, and the base case is proved.

Now consider a graph G = (V, E) and assume that (19.1) holds for any graph with |E| − 1
edges. We consider two cases.

u v
e

P

Q

(a) Case 1: The graph contains a vertex v

of degree 1. Then both sides of the only
edge incident on v belong to the same
face as indicated by the dashed line from
P on one side of the edge to Q on the
other.

u v
e

P Q

(b) Case 2: All vertices have degree at
least 2. Then there is some cycle in G,
and an edge e on that cycle is on the
boundary of two faces. The remaining
edges of e’s cycle are represented by the
unlabeled curve from u to v. The point
P is inside of the cycle, and Q is outside
of that cycle.

Figure 19.3: A visual aid for the proof of Euler’s formula.

Case 1: G has a vertex of degree 1. Let v be a vertex of degree 1 in G, and let e be the only
edge incident on v. The same face appears on both sides of the edge. To see that, pick any point
P on one side of the edge. To draw a curve from that point to the point Q that is on the other side
of that edge, first follow the edge towards v, then make a semicircle around v and follow the edge
in the other direction on the other side until you get to Q. We can go around v because it has only
one edge incident on it, so there isn’t going to be another edge in our way. We show this situation
in Figure 19.3a.

So consider the subgraph G′ = (V ′, E′) of G consisting of all vertices of G except for v and
ell edges of G except for e. This subgraph is a simple planar because it is a subgraph of a simple
planar graph. It has |V ′| = |V | − 1 vertices and |E′| = |E| − 1 edges. It also has |F ′| = |F | faces
because removing e did not remove any faces. We could have gotten from one side of e to the
other side of e without crossing any edges, so removing e does not add any more points to the face
corresponding to point x.

Finally, G′ is connected. To see that, consider any two vertices x, y ∈ V ′. Also let u ∈ G′ be
the other endpoint of e. Since G is connected, there is a path in G from x to y. If this path has e

in it, the next edge on the path is also e because the only edge we can follow from v is e. Thus,
this path goes to u, then to v, and then back to u. So we can remove the two occurrences of e from
that path and still have a path from x to y. After removing all occurrences of e from the path in
this fashion, we get a path from x to y that uses only edges in E′.

Since G′ is a simple connected planar graph with |E|−1 edges, the induction hypothesis applies,
and implies that 2 = |V ′| − |E′| + |F ′| = |V | − 1 − (|E| − 1) + |F | = |V | − |E| + |F |.

Case 2: G has no vertices of degree 1. Then there is at least one edge that is part of a cycle. (In
fact, every edge is part of some cycle, but we don’t need that for this proof.) We argue similarly as
in the proof that every directed graph has a topological ordering. In particular, we exhibit a cycle
in G.

Start at an arbitrary edge e connecting vertices v1 and v2.
We continue constructing the cycle in stages. At the beginning of stage i with 2 ≤ i ≤ n, the

following invariant holds: we have distinct vertices v1, . . . , vi such that there is a path from v1 to vi
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using edges {v1, v2}, . . . , {vi−1, vi}. We have already shown it holds in the base case with i = 2. So
now assume the invariant holds at the beginning of stage i. Since G is simple and vi has degree at
least 2, there is a vertex u 6= vi−1 such that there is an edge {vi, u} ∈ E. If u = vj for j ∈ {1, . . . , i},
this edge completes the cycle {vj , vj+1}, . . . , {vi−1, vi}, {vi, vj} and we are done.

Otherwise u is different from all of v1, . . . , vi. In that case define vi+1 = u and move to stage
i + 1. Notice that we have i + 1 distinct vertices and a path that goes from v1 to vi+1, namely the
path {v1, v2}, . . . , {vi−1, vi}, {vi, vi+1}. Thus, the invariant holds at the beginning of stage i + 1 as
well.

Then, at the beginning of stage n, we have a path that goes through all vertices, namely the path
{v1, v2}, . . . , {vn−1, vn}, and since vn has degree at least 2, there is another vertex, say vj 6= vn−1,
such that {vj , vn} is an edge. This edge completes the cycle {vj , vj+1}, . . . , {vn−1, vn}, {vn, vj}.
Thus, we have shown that there is an edge in G that is part of a cycle.

Pick any edge e ∈ E that is part of a cycle, and say its endpoints are u and v. Observe that
this cycle splits the plane into two parts: the inside of the cycle and the outside of the cycle, and
that this edge is on the boundary of both of them. The face on the inside of the cycle whose border
e is part of is different from the face on the other side of e.

Now consider the subgraph G′ = (V ′, E′) of G consisting of all vertices of G and all edges of G

except for e. Thus, we have |V ′| = |V | and |E′| = |E| − 1. Moreover, the removal of e joins the
two faces of G whose border e was, and merges them into one face. Thus, the number of faces in
G′, |F ′|, is |F | − 1. As before, observe that G′ is planar because it’s a subgraph of a planar graph.
The graph G′ is also connected. To see that, consider a path from x to y in G. If this path does
not use e, it is still present in G′. If it uses e, say by going from u to v, then, instead of traversing
e, we can go from u to v by following the rest of the cycle e is part of.

Thus, G′ is a simple planar graph. Furthermore, it has |E|−1 edges, so the induction hypothesis
applies, and implies that 2 = |V ′| − |E′| + |F ′| = |V | − (|E| − 1) + |F | − 1 = |V | − |E| + 1. This
completes the proof.

Now we use Theorem 19.3 to prove that neither K5 nor K3,3 is planar.

Theorem 19.4. The complete graph on 5 vertices, K5, is not planar.

Proof. We argue by contradiction. Assume that K5 is planar. Note that K5 has 5 vertices and 10
edges. Let F be the set of faces in the planar representation of K5. By Theorem 19.3, we have
|F | = 2 − |V | + |E| = 2 − 5 + 10 = 7.

Now consider the following set of edge-face pairs: B = {(e, f) ∈ E×F | e is on the border of f}.
We bound its cardinality in two different ways.

First, every edge is the border of at most two faces, so we have

|B| =
∑

e∈E

(number of faces with e on their border) ≤
∑

e∈E

2 = 2|E| = 20.

Second, the graph K5 is simple, so every face has at least three edges on its border. The border
cannot consist of only one edge because then that edge would be a self-loop, and it cannot consist
of only two edges because those two edges would have to be connecting the same two vertices, thus
contradicting the fact that K5 is simple. Now

|B| =
∑

f∈F

(number of edges on f ’s border) ≥
∑

f∈F

3 = 3|F | = 21.

So we see that |B| ≤ 20, and also |B| ≥ 21. This cannot happen, so the assumption that K5 is
planar is wrong, and we have that K5 is not planar.
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We use the same high-level proof structure to prove K3,3 is not planar. We start with Euler’s
formula and derive a contradiction, but this time we consider vertex-face pairs instead of edge-face
pairs.

Theorem 19.5. The complete bipartite graph with three vertices on each side, K3,3, is not planar.

Proof. Assume that K3,3 is planar. K3,3 has 6 vertices and 9 edges. Let F be the set of faces in
the planar representation of K3,3. By Theorem 19.3, we have |F | = 2 − |V | + |E| = 2 − 6 + 9 = 5.

Consider the set B = {(v, f) ∈ V × F | v is on the border of f}. We bound its size in two
different ways.

Every face has a cycle as its border. Note that the shortest this cycle can be is 4. It cannot
be 1 or 2 for the same reason as in the previous proof. Moreover, it cannot be 3 because K3,3 is
bipartite. Every cycle begins and ends at the same vertex, and edges go between vertices in two
different halves of the graph. Thus, after 3 steps, a path cannot end in the same half of the vertex
set as the half where it started. But after four steps, it can, and in that case the path visits three
more vertices in addition to the starting/ending one. Hence, we have

|B| =
∑

f∈F

(number of vertices on f ’s border) ≥
∑

f∈F

4 = 4|F | = 20.

Second, each vertex of K3,3 has degree at 3. Each face that has v on its border must have at
least two edges incident on v as its border. There are three ways to form a pair out of three edges,
so v can be on the boundary of at most 3 faces. It follows that

|B| =
∑

v∈V

(number of faces with v on their border) ≤
∑

v∈V

3 = 3|V | = 18.

So we see that |B| ≥ 20, and also |B| ≤ 18. This cannot happen, so the assumption that K3,3

is planar is wrong, and we have that K3,3 is not planar.

Now that we know K5 and K3,3 are not planar, let’s discuss what we meant when we said K5

and K3,3 were the smallest nonplanar graphs. For that we need the following definition.

Definition 19.6. A minor of a graph G is a graph obtained from G by applying a sequence of the
following operations.

(i) Removing an edge.

(ii) Removing a vertex and all edges it’s incident on.

(iii) Contracting an edge. This means we combine two vertices u, v ∈ V connected by an edge into
one vertex w. We remove that edge. If an endpoint of any other edge was in u or v, we move
that endpoint to w.

We call a minor obtained using only operations (i) and (ii) a subgraph of G.

Example 19.3: Removing edges and vertices are straightforward operations. Edge contraction may
be a little less intuitive, so let’s look at an example in Figure 19.4. In Figure 19.4a we see a graph
G. We contract the edge e and obtain the graph in Figure 19.4c. ⊠

Theorem 19.7. Every nonplanar graph contains at least one of K5 and K3,3 as a minor.

We do not prove this theorem in this course.
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a u v b

c

(a) Before contracting e.

a u v b

c

w

(b) The vertices u and v

and the edge e connecting
them become one vertex.

a w b

c

(c) After contract-
ing e.

Figure 19.4: Contracting an edge.

19.2 Graph Isomorphism

We’ve been describing K5 as the complete graph on five vertices. The article “the” requires an
explanation. There are certainly many graphs on 5 vertices such that every pair of vertices is
connected with an edge. We show a few drawings of K5 in Figure 19.5. The first one just has its
vertices labeled 0 through 4. Another one has them labeled 5 through 9. The last one has all its
vertices colored and labeled green.

The concept of isomorphism ignores such differences, and only focuses on structural differences
such as the number of connected components or the number of vertices. For example, all three
graphs in Figure 19.5 are isomorphic.

0

1

2

3

4

(a) K5 from Figure 19.1c.

5

6

7

8

9

(b) K5 with different vertex
labels.

0

1

2

3

4

(c) K5 with green vertices.

Figure 19.5: Different ways of drawing K5. The three graphs above are isomorphic.

Definition 19.8. Graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a total
bijection f : V1 → V2 such that (∀u, v ∈ V1) (u, v) ∈ E1 ⇐⇒ (f(u), f(v)) ∈ E2. We write
G1

∼= G2 to denote that G1 and G2 are isomorphic.

In other words, the map from Definition 19.8 renames the vertices of G1 using labels from G2

in a way that preserves edges.

Example 19.4: In Figure 19.6 we show two isomorphic graphs and describe the total bijection f .
Note that since the two graphs have the same number of vertices, there is some hope we can get a
total bijection.

We set f(1) = a. Now f needs to preserve edges, so for f(2) we need to pick one of the vertices
that are connected to vertex a by an edge because vertices 1 and 2 are connected by an edge. So
we choose f(2) = c. The other vertex connected to 2 with an edge is 3, and f must map it to the
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other vertex that is connected to f(2) = c because setting f(3) = a would violate the requirement
that f be a bijection. So we set f(3) = e. We finish by setting f(4) = b and f(5) = c. ⊠

1

2

3

4

5

(a) G1

a

b

c

d

e

(b) G2

v 1 2 3 4 5

f(v) a c e b d

(c) Isomorphism between the
two graphs.

Figure 19.6: Two isomorphic graphs and the isomorphism between them.

Graph isomorphism is an equivalence relation. This fact should remind you of the fact that the
last relation of problem 2 on homework 7 is an equivalence relation. In fact, the proof is almost
the same.

Let G1 = (V1, E1), G2 = (V2, E2), and G3 = (V3, E3).
Every graph is isomorphic to itself. Just define f(v) = v for all v ∈ V1. Thus, graph isomorphism

is reflexive.
Now suppose G1 is isomorphic to G2. Then there is a total bijection f : V1 → V2 such that

(u, v) ∈ E1 ⇐⇒ (f(u), f(v)) ∈ E2. Since f is a bijection, we can “reverse” it and get the map
f−1 : V2 → V1 which satisfies (w, x) ∈ E2 ⇐⇒ (f−1(w), f−1(x)) ∈ E1. It follows that graph
isomorphism is symmetric.

Finally, if G1 is isomorphic to G2 and G2 is isomorphic to G3, there are total bijective functions
f : V1 → V2 and g : V2 → V3 that satisfy the equivalences (u, v) ∈ E1 ⇐⇒ (f(u), f(v)) ∈ E2 and
(w, x) ∈ E2 ⇐⇒ (g(w), g(x)) ∈ E3. Then the map h : V1 → V3 defined by h(v) = g(f(v)) is also a
total bijection. Moreover, note (u, v) ∈ E1 ⇐⇒ (f(u), f(v)) ∈ E2 ⇐⇒ (g(f(u)), g(f(v)) ∈ E3, so
h also preserves edges. Thus, graph isomorphism is transitive.

The fact that graph isomorphism is an equivalence relation explains why we can talk about K5

as the complete graph on five vertices. Every other complete graph on five vertices is isomorphic
to K5.
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