
CS/Math 240: Introduction to Discrete Mathematics 4/14/2011

Lecture 21 : Finite State Machines

Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený

DRAFT

Last time we started discussing applications of graphs in computer science. We phrased the
register allocation problem in terms of graph coloring. Today we discuss finite state machines, a
simple model of a computer that can be viewed as a graph.

21.1 Finite State Machines

A finite state machine consists of a finite control, which we view as a set of states the machine can
be in. The machine runs in steps. In each step, it receives an input signal. Upon its receipt, the
machine produces an output signal and changes its state according to some rules.

One way of describing the functionality of a finite state machine is to draw a graph. Each state
of the machine corresponds to one vertex of the graph. We draw an arrow pointing to the state
in which the machine starts after being “powered on”. We use edges to describe the transitions

between states. For each transition, we list the inputs that cause it, and also the outputs that are
produced when this transition is made. For example, in Figure 21.1, there is an edge from state 5
to state 15. The edge is labeled 10; 0, which means that this transition occurs when the machine
receives the input 10 in state 5. The machine then goes to state 15 and outputs 0.

Example 21.1: Consider a vending machine. For simplicity, suppose it only sells one item, priced
at 30 cents, and doesn’t give any change. It accepts 5-cent, 10-cent, and 25-cent coins.

The states of the machine represent how much money has been put in since the machine first
started, or since the last item disposal, whichever came last. The machine outputs 1 (i.e., dispenses
an item) if it has received enough money to dispense an item, and outputs 0 (i.e., does not dispense
an item) in all other cases. When it dispenses an item, it goes back to the state that indicates no
money has been put in. All other state changes are shown in Figure 21.1.

⊠

Before we define a finite state machine more formally, let’s see another example. This one brings
us closer to the notion of a finite state automaton which we will be discussing for the rest of the
lecture.

Example 21.2: Consider a machine that receives one of the letters A through Z in each step. It
outputs 1 if the word NANO appears in the sequence of letters given to the machine.

We design the machine so that its states indicate how much of the word NANO it has recently
seen. We label the states 0 through 4. State i indicates that the last i symbols received were the
first i symbols from the word NANO.

If the machine is in state i for i ∈ {0, 1, 2, 3}, it goes to state i + 1 if the next letter given to it
as input is the (i + 1)st letter of the word NANO.

What if the machine receives an input that does not continue spelling the word NANO? Then
the machine must go back to an earlier state, but not necessarily the starting state. For example, if
the last three inputs received were NAN, the machine is in state 3. If the next input is A, the last
two letters received are also the first two letters of the word NANO, so the machine goes to state 2.

1

Lecture 21: Finite State Machines 21.2. Finite State Automata

0 5 10 15 20 25
5;0

10;0

25;0

5;0

10;0

25;1

5;0

10;0

25;1

5;0

10;0

25;1

5;0

10, 25;1

5, 10, 25;1

Figure 21.1: The transition diagram for the vending machine.

Going to any other state could cause the machine to produce incorrect output. For example, if the
next two letters after A were NO, the machine would not recognize that the word NANO appeared
in the input if it went to state 0 instead of state 2 after seeing A.

Finally, once the machine finds the word NANO, it stays in state 4 and keeps outputting 1 to
indicate that it has seen the word. We show all the transitions in Figure 21.2.

0 1 2 3 4
N;0 A;0

N;0

/∈{A,N};0

N;0

6=N;0

O;0

N;0

A;0

/∈{A,N};1

anything;1

Figure 21.2: A finite state automaton that decides whether a sequence of inputs contains the word
NANO in it.

⊠

21.2 Finite State Automata

The finite state machine from Example 21.2 has two special properties. First, there are only two
output symbols, 0 and 1, which we can interpret as “no” and “yes” (or “reject” and “accept”),
respectively. Second, the output symbol only depends on the state to which the machine transitions,
and does not depend on the input. Any finite state machine that satisfies these two properties is
called a finite state automaton.

When can simplify the drawing of a finite state automaton. Since there are only two outputs,
and the output only depends on the destination of the transition, we don’t show outputs on the
edge labels, and, instead, draw the vertices representing states where the output is “yes” differently

2

Lecture 21: Finite State Machines 21.2. Finite State Automata

than the vertices representing states where the output is “no”. We use two circles for the former,
and one circle for the latter. We show the result of making there changes to Figure 21.2 in Figure
21.3.

0 1 2 3 4
N A

N

/∈{A,N}

N

6=N

O

N

A

/∈{A,N}

anything

Figure 21.3: A finite state automaton that decides whether a sequence of inputs contains the word
NANO in it.

21.2.1 Formal Definition

A finite state automaton receives inputs from some finite set of symbols. We call this finite set
an alphabet. The alphabet for Example 21.1 was the set {5, 10, 25}, and the alphabet for Example
21.2 was the set {A,. . . ,Z}.

Definition 21.1. A finite state automaton is a 5-tuple (S, Σ, ν, s0, A), where

• S is a finite set of states.

• Σ is a finite set of symbols called the alphabet.

• ν : S × Σ → S is the transition function. The inputs to this function are the current state

and the last input symbol. The function value ν(s, x) is the state the automaton goes to from

state s after reading symbol x.

• The automaton starts in the start state s0 ∈ S.

• The set of accepting states A indicates which states cause the automaton to output “yes”.

Example 21.3: We show what the five parts of the tuple M1 = (S, Σ, ν, s0, A) are for the finite state
automaton in Figure 21.4.

• S = {s0, s1}.

• Σ = {0, 1}.

• ν(s0, 0) = s0, ν(s0, 1) = s1, ν(s1, 0) = s1, ν(s1, 1) = s0.

• The start state is s0.

• A = {1}.

⊠

3

Lecture 21: Finite State Machines 21.2. Finite State Automata

s0 s1

1

1

0 0

Figure 21.4: The automaton M1 used in Example 21.3.

21.2.2 Strings and Languages

In each step, a finite state automaton processes some symbol from the alphabet. The input sequence
could be infinite, thus causing the finite state automaton to run forever. For most computer
programs, this is a situation we want to avoid, so let’s focus on the case where the input sequences
have finite length.

Definition 21.2. A finite sequence of symbols from an alphabet Σ is called a string over Σ. An

empty sequence of symbols is called an empty string, and is usually denoted by λ or ǫ. If x is a

string over Σ, |x| denotes the length of the string, that is, the length of the sequence of symbols x
stands for.

For example, the length of the empty string is |ǫ| = 0. The length of the string “NANO” from
Example 21.2 is 4.

We can further group strings into sets called languages.

Definition 21.3. A language over alphabet Σ is a set of strings over Σ.

Suppose you have a program in some text file. You can view this program as a string. Some
strings represent valid programs, and some do not. It is the job of the compiler to distinguish
between the former and the latter. For the former, it should say the program is valid, and for the
latter, it should generate some error message. The set of all strings that represent valid programs
is called a programming language. This is what motivates the definition above.

With every automaton, we associate the language of all strings on which it outputs “yes”.

Definition 21.4. Given a finite automaton M , the set

L(M) = {x | when M is run on the string x starting from the start state, the final state is in A}

is called the language decided by M .

Using this definition, we could say that the language decided by the compiler is the language of
valid programs in some programming language. However, we need a stronger computational model
than a finite state automaton to implement a compiler.

Let’s now look at a language that can be decided by a finite state automaton.

Example 21.4: Let’s find the language decided by the finite state automaton M1 from Example
21.3. We start by finding some short strings in L(M1).

The empty string ǫ is not in the language because M1 on input ǫ enters the state s0, and
terminates immediately because there are no more input symbols to read. Thus, M1 ends in a
non-accepting state on this input.

The string 0 is also not in the language. The machine M1 starts in state s0, and ν(s0, 0) = s0,
so M1 stays in s0 after reading the first and only input symbol. It outputs “no” after that.

4

Lecture 21: Finite State Machines 21.2. Finite State Automata

The string 1 is in the language because the transition M1 makes from the start state after
reading 1 is to state s1, which is an accepting state. It outputs “yes” after that.

The strings 01 and 10 are in the language. The sequences of states after reading the input
symbols one by one are s0, s0, s1 and s0, s1, s1, respectively. The strings 00 and 11 are not in the
language.

The strings 001, 010, 100, 111 are all in L(M1), and no other strings of length 3 are.

We observe that M1 changes states if and only if the next input symbol is 1. Therefore, the
first time it gets to the accepting state s1 is after seeing the first 1. It leaves this state after seeing
the next 1, comes back after seeing another 1 after that, and so on. In other words, M1 changes
states if and only if it reads a 1. Because the start state is s0 6= s1, M − 1 ends in state s1 if and
only if it changes states an odd number of times, that is, if and only if the input contains an odd
number of ones.

We now turn the intuitive explanation from the previous paragraph in a formal proof. We can
think of it as proving the equality of two sets. One set is L(M1), and the other set is the set of
strings with an odd number of ones in them. We do not pursue this direction, and use invariants
instead.

First we introduce some notation that extends the transition function ν. Let x be a string
over Σ. Then ν(s, x) is the state of the automaton after reading all symbols in x, assuming the
automaton was in state s before processing the first symbol in x. Notice that if x is a single symbol
from the alphabet, this coincides with the definition of the transition function.

We have ν(s, ǫ) = ǫ for any state s. If x is not the empty string, it looks like ya where y is a
string of length |x| − 1 and a ∈ Σ. After processing y, the automaton is in state ν(s, y). The next
input symbol is a, and M1 goes to state ν(ν(s, y), a) after processing it. Thus, we get a recursive
definition of the form ν(s, ya) = ν(ν(s, y), a).

Now we prove the following invariant by induction on the number of steps: “M1 is in state s1

after n steps if and only if the number of ones in the first n symbols of x is odd”.
We saw earlier that ν(s0, ǫ) = s0. Since ǫ has an even number of ones in it, this proves the base

case.
Now suppose our invariant holds after the first n steps, and consider the (n + 1)st step. The

first n + 1 symbols in the input have the form ya where |y| = n and a ∈ Σ. There are two cases to
consider.

Case 1: M1 is in state s1 after processing y. This happens if and only if y has an odd number
of ones in it by the induction hypothesis. Now if a = 1, the state changes to s0, and the additional
1 makes the number of ones in the first n + 1 symbols even. If a = 0, M1 stays in state s1, and the
number of ones in the first n + 1 symbols stays odd. Thus, the invariant holds after n + 1 steps in
this case.

Case 2: M1 is in state s0 after processing y. This happens if and only if y has an even number
of ones in it by the induction hypothesis. Now if a = 1, the state changes to s1, and the additional
1 makes the number of ones in the first n + 1 symbols odd. If a = 0, M1 stays in state s0, and the
number of ones in the first n + 1 symbols stays even. Thus, the invariant holds after n + 1 steps in
this case too.

Then consider the situation after the entire input string x is processed, i.e., after |x| steps. By
the invariant we just proved, M1 is in state s1 if and only if the input string contains an odd number
of ones. Since s1 is the only accepting state, this implies that M1 outputs “yes” on input x if and
only if x contains an odd number of ones. ⊠

5

Lecture 21: Finite State Machines 21.2. Finite State Automata

21.2.3 Finite State Automata as a Model of Computation

We can view a finite state automaton M = (S, Σ, ν, s0, A) as a simple computer consisting of the
following parts.

• A finite control that knows the the tuple M and stores the automaton’s current state.

• A tape that has the input written on it.

• A tape head that is positioned above the tape and can read the symbol underneath it.

When the automaton starts, the finite control sets the current state to the start state s0 and
positions the tape head above the first symbol on the tape.

In each step, the automaton reads the symbol under its tape head. The finite control looks
at that symbol and at the current state, changes states according to the transition function, and
moves the tape head above the next symbol on the tape.

The finite state automaton looks like a very simple computing device. We show the setup in
Figure 21.5.

Finite control

State:

tape head

tape with input
h e l l o

(S, Σ, ν, s0, A)

Output

Figure 21.5: Components of a finite state automaton.

21.2.4 Designing Finite State Automata

We mentioned in Lecture 15 that one often uses invariants to design algorithms. This is also true
when designing finite state automata for deciding a given language L. In particular, invariants
can describe all situations in which an automaton is in a particular state. Let’s demonstrate this
technique on an example.

Example 21.5: We design a finite state automaton M that decides the language consisting of all
strings over the alphabet {0, 1} that start and end with the same symbol. For example, the strings
101 and 0111010 are in the language, and the strings 110 and 01010 are not in the language.

We create a start state s. We make it so that the only way for the computation to end in this
state is if the input is the empty string. Let’s agree that the empty string starts and ends with the
same symbol, so s is an accepting state.

Our automaton M must know what the first symbol in the input was because otherwise it will
have no way of telling whether the last symbol read so far is the same as the first symbol. Thus, we
create states s0 and s1, which indicate that the first symbol in the string was 0 and 1, respectively.

Next, we need to decide on the logic for each of the two situations mentioned in the previous
paragraph. There cannot be any transitions from s0 to s1 or from s1 to s0 because such transition
would lose information about the first symbol in the input.

6

Lecture 21: Finite State Machines 21.2. Finite State Automata

Let’s focus on the situation when the first symbol was zero first. Suppose M is in state s0 before
it reads the last symbol in the input. If this symbol is 0, M should transition to some accepting
state, and should transition to a non-accepting state otherwise. We could use the state s0 as that
accepting state. This state must be accepting anyway because the string 0 starts and ends with
zero, and M ends in state s0 after processing this string. So we make s0 an accepting state and add
a transition from state s0 to state s0 on input 0. Now on input 1 in state s0, M needs to transition
away from s0 to some non-accepting state because if this 1 were the last input in the string, staying
in s0 would cause M to accept incorrectly. So we add a state s01. This state is reached if the first
symbol in the string was 0, and the last symbol read was 1. We also redefine the meaning of the
state s0 to “the first and the last symbol read were 0”. To complete this part of the picture, there
is a transition from s01 to s0 on input 0, and from s01 to s01 on input 1.

Likewise, we make the state s1 accepting and redefine its meaning to “the first and the last
symbol read were both 1”. We also add the state s10 which indicates that the first symbol in the
string was a 1 and the last symbol read was a zero. We add transitions similar to the case when
the first input symbol was zero.

We show M in Figure 21.6. ⊠

s

s0

s1

s01

s10

0

1

0

1
0

1

0 1

1 0

Figure 21.6: The automaton M for the language over {0, 1} consisting of strings that start and end
with the same symbol.

Exercise 21.1: For next time, think about automata that accept binary representations of
multiples of k for various values of k.

7

