
CS/Math 240: Introduction to Discrete Mathematics 4/21/2011

Lecture 23 : Nondeterministic Finite Automata

Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený

DRAFT

Last time we designed finite state automata for a few more languages. After that, we started
discussing regular expressions and languages that they describe. Today we show that every language
that can be described by a regular expression can be recognized by some finite state automaton.

23.1 Connection between Regular Expressions and Finite Automata

Regular expressions and finite automata define the same class of languages. We now formalize this
equivalence of the expressive powers of regular expressions and finite automata.

Definition 23.1. A language L is regular if and only if it can be defined by a regular expression,

i.e., it can be written as L(R) for some regular expression R.

Theorem 23.2. A language L is regular if and only if it is accepted by some finite automaton,

i.e., there exists a finite automaton M such that L = L(M).

The proof of Theorem 23.2 consists of proving two implications, which we state as lemmas. We
only prove the first implication today.

Lemma 23.3. Every regular language can be decided by some finite automaton. That is, for every

regular expression R, there is a finite automaton M such that L(R) = L(M).

Lemma 23.4. For every language L decidable by some finite state automaton, there is a regular

expression R such that L = L(R).

23.1.1 A Note on Accepting

Let’s conclude this section with a different way of describing what it means for a finite state
automaton to accept. This will be useful later in this lecture. Consider a graph representation of
a finite state automaton M . We say a path e1, e2, . . . , en is labeled by a string x = x1x2 . . . xn if
edge ei is labeled by xi for i ∈ {1, . . . , n}. The machine M accepts x if there is a path from the
start state to an accepting state that is labeled by x, and rejects otherwise.

Example 23.1: Consider the machine M1 from Figure 23.2a. The only path labeled with the string
010 starts at α and the next vertices on this path are α, β, α. This path does not lead to an
accepting state, so M1 rejects x.

On the other hand, M1 accepts x = 001 because the path labeled by this string starts in state
α and the next three states it visits are α, α, β. The last state on the path is accepting. ⊠

23.2 Finite Automata from Regular Expressions

We start with the proof of Lemma 23.3. Regular expressions are defined inductively, and we exploit
this definition in a proof by structural induction. Given a regular expression R, we construct a
finite automaton M such that L(R) = L(M). All regular expressions we discuss will be over an
alphabet Σ.

1

Lecture 23: Nondeterministic Finite Automata 23.2. Finite Automata from Regular Expressions

23.2.1 Base Cases

Recall that there are three elementary regular expressions, namely ∅, ǫ, and a for a ∈ Σ. Their
corresponding languages are ∅, {ǫ}, and {a} for a ∈ Σ, respectively.

The empty regular expression corresponds to the empty language. One automaton that decides
this language is the automaton that starts in some non-accepting state and stays in that state for
the entirety of its computation. We show it in Figure 23.1a.

The regular expression ǫ corresponds to the language consisting only of the empty string. This
is accepted by the automaton that starts in an accepting state, and moves to a rejecting state
on any input. It stays in that rejecting state until it processes the entire input. We show this
automaton in Figure 23.1b.

Finally, see the automaton for the language of the regular expression a in Figure 23.1c. It starts
in a rejecting state since ǫ is not in the language. From there, it goes to an accepting state if the
input is a, and goes to a rejecting state otherwise. For any additional input, the automaton goes
to a rejecting state and stays there. Thus, the only way for the automaton to get to an accepting
state is if the first and only symbol in the input is a.

sinit any

(a) Automaton for L(∅).

sinit sg
any

any

(b) Automaton for L(ǫ).

sinit sa

sg

a

6= a any

any

(c) Automaton for L(a) with a ∈ Σ.

Figure 23.1: Automata for the three simple regular expressions.

For the induction step, we need to show that if we have automata M1 and M2 for languages
L(R1) and L(R2), respectively, we can construct finite state automata N1, N2 and N3 such that
L(R1 ∪R2) = L(N1), L(R1R2) = L(N2), and L(R∗

1) = L(N3). We do so in the rest of this lecture.

We remark that you designed automata for some languages obtained by concatenation on the
last homework. Constructing automata for those languages required some insights. By getting a
deeper understanding of the structure of a language, we can often construct very small automata
that recognize it. For the inductive step of the proof of Lemma 23.3, we present general con-
structions one can use to construct automata for any union, concatenation, and Kleene closure of
languages.

23.2.2 Union

Let R1 and R2 be regular expressions over the alphabet Σ. It is possible to handle the case where
the two regular expressions are over different alphabets, but for now let’s agree that both are over
the same alphabet.

Suppose M1 = (S1,Σ, ν1, s1, A1) and M2 = (S2,Σ, ν2, s2, A2) are such that L(R1) = L(M1) and
L(R2) = L(M2). We combine M1 and M2 into a finite state automaton N1 = (S,Σ, ν, s0, A) that
recognizes L(R1 ∪R2) = L(R1) ∪ L(R2). The finite automaton N1 should accept a string x if and
only if at least one of M1 and M2 accepts x.

2

Lecture 23: Nondeterministic Finite Automata 23.2. Finite Automata from Regular Expressions

Let’s start with a construction that does not work. To see if x ∈ L(R1 ∪R2), we could run the
machine M1 on input x, and then run M2 on input x. We accept if at least one of the machines
accepts. Unfortunately, we cannot model this procedure using a finite state automaton as it requires
us to read x twice. Finite automata cannot “rewind” the input halfway through and start reading
it again from the beginning.

Instead of running M1 and M2 in a sequence, we can run them in parallel. For that to work,
we need to keep track of the state of both machines at the same time, and update the state of
both machines after reading a symbol from the alphabet. To keep track of the states of M1 and
M2 at the same time, we create a state for each pair (s1, s2) ∈ S1 × S2. Since S1 and S2 are finite,
S = S1 × S2 is also finite (more specifically, |S| = |S1| · |S2|).

Now let’s design the transition function. Say N1 is in state (t1, t2) and reads the input symbol
a. The first component of the new state should correspond to the state M1 goes to on input a from
state t1, and the second component of the new state should correspond to the state M2 goes to on
input a from state t2. Thus, we have We have ν((t1, t2), a) = (ν1(t1, a), ν2(t2, a)).

We start running M1 in state s1, and M2 in state s2, so the start state is s0 = (s1, s2).
Finally, N1 should accept if at least one of M1 or M2 accepts. If M1 is in an accepting state t1,

M2 can be in any state. This means that if t1 ∈ A1, (t1, t2) ∈ A for any t2 ∈ S2. Similarly, if the
state of M2 is t2 ∈ A2, it doesn’t matter what the state of M1 is, so any state of the form (t1, t2)
with t1 ∈ S1 and t2 ∈ A2 should be accepting. In other words, A = A1 × S2 ∪ S1 × A2. The first
part of the union takes care of the states where M1 accepts, and the second part takes care of the
states where M2 accepts.

Example 23.2: Let M1 and M2 be the machines from Lecture 21 that accept all binary strings with
an odd number of ones and all binary strings that start and end with the same symbol, respectively.
Let’s use the procedure we described to construct the automaton for L(M1) ∪ L(M2). The result
is in Figure 23.2.

Note that |S1 × S2| = 10, but we only have 9 states in Figure 23.2c. That is because the state
(β, F) is not reachable from the start state (α, F). Machine M1 can only get to state β after reading
at least one input symbol, whereas M2 leaves state F right after reading the first symbol and never
returns to that state. ⊠

23.2.3 Nondeterministic Finite Automata

Assuming the same notation as in the previous section, we now describe how to construct a finite
state automaton N2 that accepts the concatenation L(R1)L(R2) assuming that we have automata
M1 and M2 that accept L(R1) and L(R2), respectively.

We outline an initial attempt that runs the two machines in a sequence. Combine two machines
M1 and M2 into N2 with the set of states S = S1∪S2. Start in the start state of M1, and eventually
move to some state of M2. If the empty string does not belong to L(M2), is undesirable for N2 to
accept while it’s still in one of M1’s states because at that point it has not verified the input ends
with a string in L(R2). Accepting in such a state may not be the right thing to do in this situation.
Hence, if M2 doesn’t contain the empty string, only the states in A2 are accepting. Otherwise the
set of accepting states is A1 ∪A2.

Note that M1 and M2 now run on separate parts of the input, so it is indeed possible to run
them in a series. On the other hand, a different problem arises: When do we stop the computation
of M1 and start running M2? We can start M2’s computation after M1 reaches an accepting state.
The transition on input a from that accepting state is to the state M2 goes to on input a from
its start state s2. When we make this transition, we are indicating that we think the part of the

3

Lecture 23: Nondeterministic Finite Automata 23.2. Finite Automata from Regular Expressions

α β
1

1

0 0

(a) Machine M1.

F

B

C

D

E

0

1

0

1
0

1

0 1

1 0

(b) Machine M2.

α, F

α,B β,D β,B

α,D

β,C α,C α,E

β,E

0

1

0

1 0

1
0

1
01

0

1 0

1

0

1

0

1

(c) Machine N1.

Figure 23.2: Combining M1 and M2 into a machine N1 for L(M1) ∪ L(M2).

input that belongs to L(M1) has ended, and that a is the first symbol of the part of the input that
belongs to L(M2).

As we will now see, going to M2 right after reaching an accepting state of M1 for the first time
may be a mistake.

Example 23.3: Let’s design a finite automaton for the language L(M2)L(M2) using the strategy
we outlined in the previous paragraph. Recall from Lecture 22 that L(M2)L(M2) = Σ∗ so the

4

Lecture 23: Nondeterministic Finite Automata 23.2. Finite Automata from Regular Expressions

automaton we create should accept every string.
We make two copies of M2. Let’s call the second copy M ′

2. Consider running the machine on
input 00011. The machine M2 starts in an accepting state. Thus, if we decide to move to a state of
M ′

2 right after reaching an accepting state of M2, we go to the state B′ of M ′

2 right when we read
the first symbol of the input. But now M ′

2 thinks the string starts with a zero, and it will end in
the rejecting state D′ when it’s done processing the input.

We see that transitioning to M ′

2 as soon as possible is not the right move. We should transition
to a state of M ′

2 when we read the first 1 in this input, in which case we end in the state C ′. We
stay in that state until the rest of the computation, and accept. Unfortunately, moving to M ′

2 after
seeing the third zero also doesn’t always work. For example, consider the input 000011. ⊠

The previous example should convince you that transitioning to M2’s states is not a trivial
problem. In fact, for any strategy we choose in the previous example, there is a string that causes
incorrect behavior. To remedy this, we allow multiple transitions on the same input. On input
a in an accepting state of M1, we allow both a transition to a state in M1 on input a according
to ν1, and we also allow a transition to the state ν2(s2, a). Unfortunately, now the transitions are
not defined by a function, so we don’t have a finite automaton anymore. The transitions are now
defined by a relation, which gives rise to a computational model known as the nondeterministic

finite automaton. We show the nondeterministic finite automaton for the language L(M2)L(M2)
from Example 23.3 in Figure 23.3. Note that since ǫ ∈ L(M2), the states corresponding to the first
copy of M2 remain accepting.

F

B

C

D

E

0

1

0

1
0

1

0 1

1 0

F ′

B′

C ′

D′

E′

0

1

0

1
0

1

0 1

1 0

0

1

0

1

1

0

Figure 23.3: A nondeterministic finite automaton for the language N2 = L(M2)L(M2).

Definition 23.5. A nondeterministic finite automaton is a 5-tuple N = (S,Σ, ν, s0, A) where

• S is a finite set of states.

5

Lecture 23: Nondeterministic Finite Automata 23.2. Finite Automata from Regular Expressions

• Σ is a finite set of symbols called the alphabet.

• The transition relation ν is a relation from (S × Σ) to S, and ((s, a), t) ∈ ν means that N
can go from state s to state t if it reads symbol a. If there is no tuple ((s, a), t) ∈ ν for some

s and a, N rejects immediately without reading the rest of the input.

• The automaton starts in the start state s0 ∈ S.

• The states in A ⊆ S are the accepting states. The machine N accepts x if there is a path

from s0 to some state t ∈ A that is labeled by x. The machine N rejects x otherwise.

With the exception of the transition relation, Definition 23.5 is exactly the same as the definition
of a finite state automaton. Also note that nothing really changes with the graph representation,
except now multiple edges leaving a vertex can have the same label.

This justifies why we defined acceptance using paths in a graph in Section 23.1.1. There could
now be multiple paths from the start state that are labeled with a string x. If any one of them
leads to an accept state, the machine accepts. Otherwise, the machine rejects. It is also possible
that there is no path labeled with x, in which case the nondeterministic finite automaton rejects.

Example 23.4: Consider the nondeterministic finite automaton in Figure 23.4 that operates on the
alphabet {0, 1}. Observe that there is no transition from some state s1 on input 1, so if it gets to
state s1 and reads a 1, it rejects. On the other hand, on any input x with a 1 in it, there is a path
to s1 that is labeled by x: Stay in s0, and transition to s1 on the last occurrence of 1 in x. Thus,
the automaton accepts all strings that contain a 1, and rejects all strings without ones.

s0 s1
1

0, 1 0

Figure 23.4: A nondeterministic finite automaton for Example 23.4.

⊠

A nondeterministic automaton is no longer a realistic model of computation because it has the
capability of arbitrarily choosing which path to take, which is something a computer cannot do.
One way of thinking about running a nondeterministic finite automaton is that it’s a process which
spawns off a copy of itself for each valid transition, and each copy of the process makes a different
transition and continues computing on its own. It then suffices if one copy of this process accepts.
Another way to think about it is in terms of graphs. The existence of a path from a start state
labeled x and ending in an accept state implies that x is in the language. Yet another way to think
about it is that the machine somehow magically knows which path to follow in each case. If there
is an accepting path, the machine picks a transition that follows that path whenever it has multiple
transitions to choose from.

23.2.4 Concatenation

Let’s now go back to designing a finite state automaton for the language L(R1R2) out of M1 and
M2. The strategy we described in the previous section gives us a generic way of constructing an
automaton for such a language. In fact, the strategy we described works even if we have two

6

Lecture 23: Nondeterministic Finite Automata 23.2. Finite Automata from Regular Expressions

nondeterministic finite automata Na and Nb and we want to construct a nondeterministic finite
automaton for the language L(Na)L(Nb). We present this more general construction.

Let M1 = (S1,Σ, ν1, s1, A1) and M2 = (S2,Σ, ν2, s2, A2) be nondeterministic finite automata.
The nondeterministic finite automaton N2 = (S,Σ, ν, s0, A) for the language L(M1)L(M2) is defined
as follows.

• S = S1 ∪ S2

• ν = ν1 ∪ ν2 ∪ {((s, a), t) | s ∈ A1, ((s2, a), t) ∈ ν2}

• s0 = s1

• A =

{

A2 ǫ /∈ L(M2)
A1 ∪A2 otherwise

We are not done yet because we want a deterministic finite automaton for L(R1R2). The
following theorem which we will prove next time completes the construction.

Theorem 23.6. Let N be a nondeterministic finite automaton. Then there exists a finite state

automaton M such that L(N) = L(M).

23.2.5 Kleene Closure

Finally, let R1 be a regular expression and M1 = (S1,Σ, ν1, s1, A1) a finite state automaton such
that L(M1) = L(R1). We describe how to use M1 in the construction of an automaton N3 that
accepts the language of the regular expression R∗

1. We only construct a nondeterministic automaton
and then appeal to Theorem 23.6.

We use some ideas from the construction of a nondeterministic finite automaton that recognizes
the concatenation of two languages. Unfortunately, we cannot just repeat the construction multiple
times because this would require an infinite amount of states. Instead, we show that one copy of
the automaton M1 that recognizes L(R1) is sufficient.

We construct N3 as a copy of M1 with some additional transitions. When M1 is in an accepting
state and receives input a, we allow it to transition to any state t that satisfies ((s0, a), t) ∈ ν1 (with
this notation, it also follows that M1 can be nondeterministic for this construction to work). This
allows N3 to decide that the last symbol it read from an input z was the first symbol of the next
string in L(R) that is used as part of z.

Notice that the empty string belongs to L(R∗) no matter was R is, so if the start state of M1 is
rejecting, our construction so far fails to accept the empty string. We can remedy that by adding
a start state sinit that is accepting and to which N3 is never going to return. Then on input a, we
add a transition from sinit to state t if ((s1, a), t) ∈ ν1. This completes the construction of N3.

Example 23.5: Since the construction we described applies to nondeterministic finite automata,
let’s illustrate it on the automaton N from Figure 23.4.

First, we disregard the empty string and only add transitions from the accepting state s1 of
machine N . In particular, we add the transitions ((s1, 0), s0), ((s1, 1), s0) and ((s1, 1), s1) to the
transition relation. This is shown in Figure 23.5a.

We complete the construction by adding a state sinit which accepts the empty string in addition
to all other strings in L(N)∗. We add the transitions ((sinit, 0), s0), ((sinit, 1), s0) and ((sinit, 1), s1)
to the transition relation. The result is in Figure 23.5b. ⊠

Here is a formal description of the automaton N3 = (S,Σ, ν, s0, A) for L(R
∗

1) where the nonde-
terministic finite automaton M1 = (S1,Σ, ν1, s1, A1) satisfies L(M1) = L(R1).

7

Lecture 23: Nondeterministic Finite Automata 23.2. Finite Automata from Regular Expressions

s0 s1
1

0, 1 0, 1

0, 1

(a) Adding transitions allowing to
start processing the next string in
the concatenation.

s0 s1

sinit

1

0, 1 0, 1

0, 1

0, 1 1

(b) Adding a new start state
to ensure that our automaton
accepts the empty string.

Figure 23.5: Turning the automaton N from Figure 23.4 into an automaton that recognizes the
language L(N)∗.

• S = S1 ∪ {sinit}

• ν = ν1 ∪ {((s1, a), t) | ((s1, a), t) ∈ ν1 ∧ s1 ∈ A1} ∪ {((sinit, a), t) | ((s1, a), t) ∈ ν1}

• s1 = sinit

• A = A1 ∪ {sinit}

Let’s argue that L(R∗

1) ⊆ L(N3). Since L(R∗

1) = L(R1)
∗ =

⋃

∞

k=0
L(R1)

k, it suffices to show
that L(R1)

k ⊆ L(N3) for all k ∈ N. We argue by induction.
For the base case L(R1)

0 = {ǫ}, note that N3 starts in an accepting state, so it accepts the
empty string. Therefore, L(R1)

0 ⊆ L(N3).
Now assume that L(R1)

k ⊆ L(N3), and consider a string x ∈ L(R1)
k+1. We can write x as the

concatenation x = x1x2 . . . xkxk+1 where xi ∈ L(R1) for i ∈ {1, . . . , k + 1}. Let x′ = x1x2 . . . xk.
Then we have x = x′xn+1 where x′ ∈ L(R1)

k and xn+1 ∈ L(R1). Since L(R1)
k ⊆ L(N3) by the

induction hypothesis, there is a path labeled by x′ that starts in the start state of N3 and ends
in an accepting state t of N3. The automaton N3 is in this state when it starts processing xn+1.
Since the state is accepting, N3 correctly accepts if xn+1 = ǫ and ǫ ∈ L(R1). When xn+1 6= ǫ,
there is a path labeled by xn+1 that starts in M1’s start state s1 and ends in some accepting state
t′. We constructed N3 so that for any input symbol a, it can get from any of its accepting states
to any state of M1 that is reachable from s1 if the next input symbol is a. Furthermore, since N3

contains a copy of M1 in it, it can follow the same path as M1 after processing the first symbol a,
and thus can reach an accepting state if M1 can. This means that x ∈ L(N3). Now the proof that
L(R∗

1) ⊆ L(N3) is complete.

Now we argue by induction on the length of a string in L(N3) that L(N3) ⊆ L(R1)
∗.

For the base case, note that ǫ ∈ L(N3) because N3 starts in an accepting state. We also have
ǫ ∈ L(R)0, so ǫ ∈ L(R1)

∗, and the base case is proved.
Now assume that every string y of length at most n that belongs to L(N3) belongs to L(R1)

∗.
In other words, for every y of length at most n, there is an integer k ∈ N such that y ∈ L(R1)

k.
Consider x ∈ L(N3) such that |x| = n+1, and look at a path labeled by x that leads from the state
sinit to an accepting state of N3. Consider the last time on the path when N3 goes from an accepting
state on input symbol a to a state that is reachable from M1’s start state s1 on input symbol a.
If the last time is after reading the initial symbol, this means that N3 only uses transitions that
are present in M1 after reading the initial symbol, and M1 can get to the same state as N3 on the

8

Lecture 23: Nondeterministic Finite Automata 23.2. Finite Automata from Regular Expressions

initial input symbol by construction. Thus, M1 accepts the input, so x ∈ L(M1), which means
x ∈ L(R1), and, therefore, x ∈ L(R1)

∗. Otherwise the last time happens after reading some symbol
xi for i > 1, and N3 moves to state t after reading xi. By construction, N3 can go to state t from
its start state sinit on input xi. But then there is a path labeled by the string xixi+1 . . . xn+1 of
length at most n from sinit to an accepting state of N3, which means xixi+1 . . . xn+1 ∈ L(N3), and
this string also belongs to L(R1)

k for some k by the induction hypothesis. Furthermore, the string
x1 . . . xi−1 of length at most n is also a string that labels a path from sinit to an accepting state of
N3, which means that x1 . . . xi−1 ∈ L(R1)

ℓ. But then x ∈ L(R1)
ℓ+k, and we are done.

9

