
CS/Math 240: Introduction to Discrete Mathematics 4/26/2011

Lecture 24 : Finite Automata vs Regular Expressions

Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený

DRAFT

Last time we started discussing the equivalence of the expressive powers of regular expressions
and finite state automata. We proved that any language that is described by a regular expression
is accepted by some nondeterministic finite automaton, and then quoted a theorem stating that if
a language is accepted by a nondeterministic finite automaton, it is also accepted by some finite
state automaton. We proved that theorem today, and then show that if a language is accepted by
some finite state automaton, it can also be described by a regular expression.

24.1 Equivalence of Nondeterministic and Deterministic Automata

Recall we are working towards proving the following theorem.

Theorem 24.1. A language L can be written as L(R) for some regular expression R if and only

if L is accepted by some finite automaton M , i.e., L can be written as L(M).

Last time we proved the following lemma by structural induction.

Lemma 24.2. For every regular expression R, there is a finite automaton M such that L(R) =
L(M).

For the base cases, we designed automata for the languages L(∅), L(ǫ) and L(a) for a ∈ Σ.
For the induction step, we assumed the existence of automata M1 and M2 for L(R1) and L(R2),
and designed automata N1, N2 and N3 such that L(N1) = L(R1 ∪ R2), L(N2) = L(R1R2) and
L(N3) = L(R∗

1). We only constructed nondeterministic finite automata for the last two languages,
so what we really showed was the following.

Lemma 24.3. For every regular expression R, there is a nondeterministic finite automaton M

such that L(R) = L(M).

To complete the proof of Lemma 24.2, we need the following theorem.

Theorem 24.4. Let N be a nondeterministic finite automaton. Then there exists a finite state

automaton M such that L(N) = L(M).

Example 24.1: Last time we constructed a nondeterministic finite automaton for the Kleene closure
of a language. We show the original automaton N in Figure 24.1a, and the automaton N ′ for the
Kleene closure of L(N) in Figure 24.1b. We construct a finite state automaton M that accepts the
same language as N ′.

The main part of the construction of any automaton is to decide what states it should have.
We need to keep track of information about N ′ that allows us to decide whether it accepts or not.
The automaton N ′ accepts a string x if there is a path labeled by x that starts in the start state of
N ′ and ends in one of its accept states. If we find all possible states N ′ can reach after processing
x, we can decide whether N ′ accepts or not simply by checking whether one of the reachable states
is accepting. We show this for input x = 011010 in Figure 24.1c. We see that one of the states
reachable by N ′ after processing x is s1 and this state is accepting, so N ′ accepts x. ⊠

1

Lecture 24: Finite Automata vs Regular Expressions24.1. Equivalence of Nondeterministic and Deterministic Automata

s0 s1
1

0, 1 0

(a) The nondeterministic finite au-
tomaton N for Example 24.1.

s0 s1

sinit

1

0, 1 0, 1

0, 1

0, 1 1

(b) The nondeterministic fi-
nite automaton N

′ for the lan-
guage L(N)∗.

Symbol States

sinit
0 s0
1 s0, s1
1 s0, s1
0 s0, s1
1 s0, s1
0 s0, s1

(c) States reachable by N
′

after processing each sym-
bol of 011010.

{s0} {s0, s1}

{sinit}

1

0

0, 1

0 1

(d) A finite automaton M
′ such that

L(M ′) = L(N ′).

Figure 24.1: Converting a nondeterministic finite automaton to a deterministic finite automaton.

Proof of Theorem 24.4. LetN = (S,Σ, ν, s0, A). We describe a deterministic finite state automaton
M = (S′,Σ, ν ′, s′0, A

′) such that L(N) = L(M).
We keep track of all possible states N can be in after having processed the input, so define

S′ = P(S).
Suppose that T is the set of states N can be in after processing some initial portion of the

input, and let a be the next symbol from the input that N reads. For any state t ∈ T , N can go
to any state s ∈ S such that ((t, a), s) ∈ ν. Now T is a state of M , and the state M goes to from
there is {s ∈ S | (∃t ∈ T)((t, a), s) ∈ ν}, i.e., the state represented by the set of all states of N
reachable from some state in T on input a. This gives us the following formal description of ν ′ for
a state s′ ∈ S′ and a ∈ Σ: ν ′(s′, a) = {t ∈ S | (∃s ∈ s′)((s, a), t) ∈ ν}.

When N starts its computation, it’s in state s0 and cannot be in any other state, so the start
state of M is s′0 = {s0}.

Since N accepts as long as it reaches some accepting state, any subset of S that contains an
accepting state of N should correspond to an accepting state of M , so we have A′ = {s′ ∈ S′ |
s′ ∩A 6= ∅}. This completes the construction of M .

We now argue that L(M) = L(N). In particular, we prove the following invariant: After
processing n symbols of the input x, the state of s′ of M is labeled by the set of all possible states
N can reach after reading the first n symbols of x.

For the base case, consider the situation before reading the first input symbol. Then N is in
its start state s0, and M is in the state s′0 = {s0}. Thus, the invariant holds at the start of the

2

Lecture 24: Finite Automata vs Regular Expressions24.1. Equivalence of Nondeterministic and Deterministic Automata

computation.
Now suppose the invariant holds after processing the first n symbols of the input, and consider

processing the (n+ 1)st symbol, a, of the input. The machine M is in state s′, which is the set of
states N can be in after reading the first n symbols of x by the induction hypothesis. After reading
a, N can reach any state t such that ((s, a), t) ∈ ν where s ∈ s′ is a state N can currently be in.
But this set is exactly ν ′(s′, a), so the invariant holds after processing a. This completes the proof
of the invariant.

After processing the entire string x, the state of M represents the set of all possible states N

can reach after processing x by the invariant we just proved. Say M is in state s′ after processing x.
If N can reach an accepting state s, s ∈ s′, so s′ is accepting by construction. On the other hand,
if N cannot reach an accepting state on input x, it rejects. Also, s′ doesn’t contain any accepting
state of N , and is, therefore, rejecting as well. It follows that M accepts x if and only if N accepts
x, so L(M) = L(N).

This completes the proof of Lemma 24.2.

We remark that the number of states in the construction of M in the proof of Theorem 24.4 is
exponential in terms of the number of states of N since |S′| = |P(S)| = 2|S|. One may ask whether
this amount of states is excessive. In general, it an exponential number of states may be necessary,
and you will show this on your tenth homework. In some cases, it is possible to get away with
much fewer states. We illustrate that on an example.

Example 24.2: Consider the automaton N ′ from Figure 24.1b. We can construct a finite state
automaton M ′ with three states such that L(M ′) = L(N ′). The automaton M ′ has the same
number of states as N ′.

First create the state {sinit that represents the only state N ′ can be in when it starts computing.
Now on input 0 in sinit, N

′ can only go to state s0, so we add he state {s0} to M , and a transition
to that state from sinit on input 0. When in sinit, N

′ can go to states s0 and s1, so we add the state
{s0, s1} to M , and a transition to it from sinit on input 1.

Now let’s figure out the transitions from the states {s0} and {s0, s1}. We see from Figure 24.1b
that the only state N ′ can go to from state s0 on input 0 is s0, so M stays in state {s0} on input
0. If N receives input 1 in state s0, it can either stay in s0 or go to s1. It cannot go to any other
state, so M goes from {s0} to {s0, s1} on input 1. Since N can go to states s0 and s1 on input 1
from s0, and it cannot get to state sinit from anywhere, M stays in {s0, s1} on input 1. Finally, if
N is in state s0 or s1, it can choose to stay in its current state on input 0, and cannot go to sinit,
so M stays in the state {s0, s1} on input 0. Note that this exhausts all possible transitions M can
make, and it didn’t require us to add any more states to M .

To complete the construction, we make states {sinit} and {s0, s1} accepting. The complete
automaton is in Figure 24.1d. ⊠

Example 24.3: Consider using the generic construction from the proof of Theorem 24.4 applied
to the nondeterministic finite automaton N from Figure 24.1a. One of the states created by this
construction is the state {s1}. Note that there is no transition from s1 on input 1 in N , so the
equivalent deterministic finite automaton M goes to the state labeled by the empty set when it
receives the input 1 in state {s1}. We leave out all the remaining details and only show the final
automaton obtained using the generic construction in Figure 24.2. ⊠

We remark that although nondeterministic finite automata have the power of guessing, they
accept the same set of languages as deterministic finite automata. The only difference is an expo-
nential blowup in the number of states, but raising 2 to a constant is still only a constant, so we
don’t necessarily mind the exponential blowup.

3

Lecture 24: Finite Automata vs Regular Expressions 24.2. Regular Expressions from Finite Automata

{s0} {s0, s1} {s1} ∅
1

0

0, 1

0

1

0, 1

Figure 24.2: The deterministic finite automaton M that accepts the same language as the nonde-
terministic finite automaton N from Figure 24.1a.

Nondeterminism is connected to satisfiability and the P versus NP problem. There is an efficient
nondeterministic algorithm for satisfiability: Just guess an assignment, and check if the formula is
satisfied by it. This algorithm runs in nondeterministic polynomial time (this explains the name
NP: it’s the class of problems that can be solved in nondeterministic polynomial time). The
conjecture is that no (deterministic) polynomial time algorithm (P is the class of problems that
can be solved in deterministic polynomial time) for satisfiability, but no proof of this is known.

24.2 Regular Expressions from Finite Automata

We now prove the other part of Theorem 24.1.

Lemma 24.5. For every language L decidable by some finite state automaton, there is a regular

expression R such that L = L(R).

Before we prove Lemma 24.5, let’s start with some examples.

Example 24.4: Consider the automaton M1 in Figure 24.3a that accepts binary strings with an
odd number of ones. A regular expression that characterizes L(M1) must capture all strings that
take M1 from the start state s0 to the accept state s1.

One set of strings that brings M1 from state s0 to state s1 is the set of strings that start with
an arbitrary number (including none) zeros and end with a single 1. The regular expression that
characterizes such strings is 0∗1. In fact, every string accepted by M1 must start with a string that
matches this regular expression.

Now M1 is in state s1. It could leave this state and come back to it again later. The machine
stays in state s1 as long as it’s reading zeros. After that, it reads a one and goes back to state s0.
A sequence of an arbitrary number of zeros followed by a 1 brings it back to s1, and this is the only
way it can happen. Thus, the strings that take M1 from s1 to s1 via s0 are given by the regular
expression 0∗10∗1. Note that any number of such strings concatenated together form a string that
labels a path from s1 to s1. Such a string matches the regular expression (0∗10∗1)∗.

Finally, at the very end after reading the last 1 of the input that takes M1 to state s1, there
could be an arbitrary number of zeros in the input string. After reading those, M1 is still in state
s1. Thus, the regular expression that characterizes L(M1) is 0

∗1(0∗10∗1)∗0∗. ⊠

Example 24.5: The machine M2 that accepts string which start and end with the same symbol
has multiple accepting states. For each accepting state, we need to find the set of strings that
label some path from the starting state to that accepting state, and describe the set by a regular
expression. Since M2 can reach any accepting state to accept, we take the union of these regular
expressions and obtain a regular expression that characterizes L(M2).

4

Lecture 24: Finite Automata vs Regular Expressions 24.2. Regular Expressions from Finite Automata

s0 s1
1

1

0 0

(a) Machine M1 that accepts
strings with an odd number of ones.
We derive a regular expression for
L(M1) in Example 24.4.

sinit

s0

s1

s01

s10

0

1

0

1
0

1

0 1

1 0

(b) Machine M2 that accepts strings that
start and end with the same symbol. We
derive a regular expression for L(M2) in
Example 24.5.

Figure 24.3: Some machines for which we construct regular expressions that characterize the lan-
guages they accept.

The start state is one accepting state. The machine M2 cannot get back to it after reading an
input symbol, so only the empty string labels a path from the start state to the start state. The
corresponding regular expression is ǫ.

Another accepting state is the state s0. To get to it, M2 must read a zero as the first symbol
in the input. It can read an arbitrary number of additional zeros and still stay in s0. If it reads a
1, it moves to state s01 where it stays as long as it’s reading additional 1s. It returns back to s0 as
soon as reads a zero in state s01. The process of reading some number of zeros, then some number
of ones, and then another zero can repeat an arbitrary number of times. Finally, after reading the
last 1 in the input and returning to s0, M2 can read an arbitrary number of additional zeros to
stay in s0 and accept. Thus, the regular expression that characterizes the strings that label a path
from the start state to s0 is 0(0∗11∗0)∗0∗.

By the same reasoning as in the previous paragraph, the regular expression 1(1∗00∗1)∗1∗ char-
acterizes all strings that label a path from the start state to the accepting state s1.

Finally, we combine the three regular expressions we obtained and get the regular expression
ǫ ∪ 0(0∗11∗0)∗0∗ ∪ 1(1∗00∗1)∗1∗ that characterizes L(M2). ⊠

The constructions in the last two examples were somewhat arbitrary. We now show a generic
way of finding a regular expression R that describes the language of some finite state automaton M .
The main idea is the same. For each accepting state, we find a regular expression that characterizes
all strings that take M from the start state to that accepting state, and then take their union. The
way we obtain those regular expressions is different, however. In the examples we presented, we
reasoned about all possible paths that lead to an accepting state and constructed the regular
expressions directly. But the automata we consider in the general case of Lemma 24.2 could be
arbitrary complicated, so we build the regular expression systematically in steps. In particular, we
initially restrict the states the automaton can use, and gradually relax the restriction by allowing
the machine to use one additional state in each step of the construction.

5

Lecture 24: Finite Automata vs Regular Expressions 24.2. Regular Expressions from Finite Automata

Proof of Lemma 24.2. Let L be the language accepted by some finite state automaton M . Without
loss of generality, label M ’s states with integers 1, 2, . . . , |S|. For each i, j ∈ {1, . . . , |S|} and
k ∈ {0, 1, . . . , |S|}, we construct a regular expression Ri,j,k such that L(Ri,j,k) is the set of strings
that bring M from state i to state j along a path on which the intermediate states have labels at
most k.

In step k for k ∈ {0, . . . , |S|}, we construct the regular expressions Ri,j,k for all pairs of values
of i and j.

In stage 0, a path from i to j can only go through states with label 0 or less. That is, no
intermediate states are allowed. The set of strings that allows M to go from state i to state j

with i 6= j is then Xi,j = {a | ν(i, a) = j}, so Ri,j,0 =
⋃

a∈Xi,j
a. If i = j, an additional string

that takes M from state i to j is the empty string (because in that case M just stays put). Thus,

Ri,i,0 = ǫ ∪
(

⋃

a∈Xi,j
a
)

.

Now consider stage k+ 1. We have the regular expressions Ri,j,k for all pairs of values of i and
j, and we use them to build the regular expressions Ri, j, k + 1 for all pairs of values of i and j.
So consider some i and j. A path from i to j that uses states labeled by k + 1 or less either uses
state k + 1 or it doesn’t. If it doesn’t, it only uses states labeled by k or less, and the strings that
label such a path are characterized by Ri,j,k. If the path uses the state k + 1, it first goes to k + 1
via states labeled k or less. This portion of the path is characterized by the regular expression
Ri, k + 1, k. After that, M the path can visit k + 1 multiple times, and the path between each
subsequent visit is a path from k+1 to k+1 using states labeled by k or less. The regular expression
Rk+1,k+1,k characterizes such a path. Finally, after its last visit to k+1, M follows a path to j using
intermediate states labeled by k or less, and the regular expression that characterizes all strings
that label such paths is Rk+1,j,k. Thus, the regular expression for the kind of path from i to j we
just described is Ri,k+1,kR

∗
k+1,k+1,kRk+1,j,k. Since the two possibilities we described are the only

two possibilities how M can get from state i to state j using states labeled by k+1 or less, we have
Ri,j,k+1 = Ri,j,k ∪Ri,k+1,kR

∗
k+1,k+1,kRk+1,j,k.

The construction stops after stage |S| because at that point we have regular expressions char-
acterizing all possible paths through the graph that represents the automaton M . From among
those, we pick the regular expressions that characterize an accepting path from the start state of
M to some accepting state of M . Thus, the final regular expression R is R =

⋃

s∈ARs0,s,|S|.

Example 24.6: We construct the regular expression for the language of the automaton in Figure
24.4, which is just the automaton M ′ from Figure 24.1d with its states renamed.

2

1

3
1

0 0, 1

0 1

Figure 24.4

In stage 0, we construct the regular expressions Ri,j,0 for all pairs i and j. The only way to
get to state 1 from state 1 using no intermediate states is on the empty path, so R1,1,0 = ǫ. The
only way to get to state 2 from state 1 without using any intermediate states is by reading a zero,

6

Lecture 24: Finite Automata vs Regular Expressions 24.2. Regular Expressions from Finite Automata

so R1,2,0 = 0. By similar reasoning, R1,3,0 = 1. There is no way to get from state 2 to state 1, so
R2,1,0 = ∅. We summarize the remaining regular expressions from this step in Table 24.1a.

Let’s also describe some of the constructions in step 1.
First, observe R1,1,0R

∗
1,1,0R1,1,0 = ǫǫ∗ǫ. No matter how many times we concatenate the empty

string with itself, we get the empty string, so R1,1,0R
∗
1,1,0R1,1,0 = ǫ, and we have R1,1,1 = R1,1,0 ∪

R1,1,0R
∗
1,1,0R1,1,0 = ǫ ∪ ǫ = ǫ.

Second, note R2,1,0R
∗
1,1,0R1,2,0 = ∅ǫ∗0. Since the regular expression ∅ doesn’t characterize

any strings whatsoever, concatenating some regular expression with the empty regular expression
also doesn’t characterize any strings. It follows what R2,1,0R

∗
1,1,0R1,2,0 = ∅, so R2,2,1 = R2,2,0 ∪

R2,1,0R
∗
1,1,0R1,2,0 = 0 ∪ ∅ = 0.

We leave the reasoning for all the remaining regular expressions to the reader. We made some
simplifications in Table 24.1c describing step 2 of the construction to make the derivation of the
final regular expressions in step 3 (shown in Table 24.1d) more readable. Note that even with the
simplifications, some of the regular expressions, in particular R1,3,3, become tedious already.

Finally, since the start state is 1 and the accepting states are 1 and 3, the regular expression R

such that L(R) = L(M ′) is R = ǫ ∪ 1 ∪ 00∗1 ∪ (1 ∪ 00∗1)(ǫ ∪ 0 ∪ 1)∗(ǫ ∪ 0 ∪ 1).
⊠

7

Lecture 24: Finite Automata vs Regular Expressions 24.2. Regular Expressions from Finite Automata

i j Ri,j,0

1 1 ǫ

1 2 0
1 3 1
2 1 ∅
2 2 ǫ ∪ 0
2 3 1
3 1 ∅
3 2 ∅
3 3 ǫ ∪ 0 ∪ 1

(a) Constructing Ri,j,0.

i j Ri,j,1

1 1 ǫ ∪ ǫǫ∗ǫ = ǫ

1 2 0 ∪ ǫǫ∗0 = 0
1 3 1 ∪ ǫǫ∗1 = 1
2 1 ∅ ∪ ∅ǫ∗ǫ = ∅
2 2 (ǫ ∪ 0) ∪ ∅ǫ∗0 = ǫ ∪ 0
2 3 1 ∪ ∅ǫ∗1 = 1
3 1 ∅ ∪ ∅ǫ∗ǫ = ∅
3 2 ∅ ∪ ∅ǫ∗0 = ∅
3 3 (ǫ ∪ 0 ∪ 1) ∪ ∅ǫ∗1 = ǫ ∪ 0 ∪ 1

(b) Constructing Ri,j,1.

i j Ri,j,2

1 1 ǫ ∪ ǫǫ∗ǫ = ǫ

1 2 0 ∪ 0(ǫ ∪ 0)∗(ǫ ∪ 0) = 00∗

1 3 1 ∪ 0(ǫ ∪ 0)∗1 = 1 ∪ 00∗1
2 1 ∅ ∪ (ǫ ∪ 0)(ǫ ∪ 0)∗∅ = ∅
2 2 (ǫ ∪ 0) ∪ (ǫ ∪ 0)(ǫ ∪ 0)∗(ǫ ∪ 0) = 0∗

2 3 1 ∪ (ǫ ∪ 0)(ǫ ∪ 0)∗1 = 0∗1
3 1 ∅ ∪ ∅(ǫ ∪ 0)∗∅ = ∅
3 2 ∅ ∪ ∅(ǫ ∪ 0)∗(ǫ ∪ 0) = ∅
3 3 (ǫ ∪ 0 ∪ 1) ∪ ∅(ǫ ∪ 0)∗1 = ǫ ∪ 0 ∪ 1

(c) Constructing Ri,j,2.

i j Ri,j,3

1 1 ǫ

1 2 00∗

1 3 (1 ∪ 00∗1) ∪ (1 ∪ 00∗1)(ǫ ∪ 0 ∪ 1)∗(ǫ ∪ 0 ∪ 1)
2 1 ∅
2 2 0∗ ∪ 1(ǫ ∪ 0 ∪ 1)∅ = 0∗

2 3 1 ∪ (ǫ ∪ 0)(ǫ ∪ 0)∗1 = 0∗1
3 1 ∅
3 2 ∅
3 3 (ǫ ∪ 0 ∪ 1) ∪ (ǫ ∪ 0 ∪ 1)(ǫ ∪ 0 ∪ 1)∗(ǫ ∪ 0 ∪ 1) = {0, 1}∗

(d) Constructing Ri,j,3. We make no attempt to simplify some of the regular
expressions and omit the intermediate steps in some other cases.

Table 24.1: Constructing a regular expression that characterizes L(M ′) where M ′ is the automaton
in Figure 24.4.

8

