
CS/Math 240: Introduction to Discrete Mathematics 5/5/2011

Lecture 27 : Combinatorial Arguments

Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený

DRAFT

Last time we continued our discussion of counting. In general, this is a problem in which we
are given a description of a finite set, and our goal is to find the set’s cardinality. Last time we
discussed some more examples and also the inclusion-exclusion principle which is a generalization
of the sum rule from two lectures ago.

Today we give another example of the inclusion-exclusion principle. After that, we discuss the
pigeonhole principle. The pigeonhole principle is not a counting technique. It allows us to prove
that some events happen, but does not provide any more details about how they occur. Our last
topic (today and in this course) will be combinatorial arguments. The idea behind those is that we
can often count a set in multiple ways, and viewing it in different ways yields some identities and
inequalities between mathematical objects.

27.1 Inclusion-Exclusion Continued

Recall that the inclusion-exclusion formula is a generalization of the sum rule. We have sets S1

through Ss, and want to find the cardinality of their union as a function of cardinalities of other
sets. In particular, we have the following identity.

∣

∣

∣

∣

∣

s
⋃

i=1

Si

∣

∣

∣

∣

∣

=
∑

06=I⊆[s]

(−1)|I|+1

∣

∣

∣

∣

∣

⋂

i∈I

Si

∣

∣

∣

∣

∣

=
s

∑

i=1

|Si| −
∑

1≤i<j≤s

|Si ∩ Sj |+
∑

1≤i<j<k≤s

|Si ∩ Sj ∩ Sk| − · · ·+ (−1)s+1 |S1 ∩ · · · ∩ Ss|

Let’s see an example. We would like to count the primes less than or equal to 100. One way to
do it would be two write down all numbers between 2 and 100 and cross out nontrivial multiples
of each number. The numbers that are left are primes. This algorithm is known as the sieve of

Eratosthenes. It works fairly well for small sets of primes, but gets too complex for larger sets. We
use the inclusion-exclusion formula to count the primes.

Example 27.1: Instead of counting the primes, we count integers that are at most 100 and are
nontrivial multiples of other integers k > 2. Let M ′

k be the set of multiples of k that are less than
100. That is M ′

2 = {2, 4, 6, . . . , 98, 100}, M ′
3 = {3, 6, 9, . . . , 96, 99}, and so on.

We claim that every non-prime less than 100 is divisible by a prime less than
√
100. We can

prove this by contradiction. Every non-prime number n has two (possibly equal) prime factors. If
both of them are more than

√
100 = 10, we would have n > 10 · 10 = 100, so n would not be an

integer that’s at most 100.
The previous paragraph implies that each non-prime that’s at most 100 has one of the primes

2, 3, 5, 7 as a divisor. Hence, if we count the nontrivial multiples of these four primes that are
at most 100 and subtract them from the total number of integers between 2 and 100, we get the
number of primes between 2 and 100.

1

Lecture 27: Combinatorial Arguments 27.2. Pigeonhole Principle

The nontrivial multiples of our four primes live in the sets M ′
2, M

′
3, M

′
5 and M ′

7. Then they
live in their union. The union of those sets also contains our four primes, so after we find |M ′

2 ∪
M ′

3 ∪M ′
5 ∪M ′

7|, we need to subtract 4 from that number to get the number of non-primes between
2 and 100. We use the inclusion-exclusion formula to count the number of elements in the union.

|M ′
2 ∪M ′

3 ∪M ′
5 ∪M ′

7| = |M ′
2|+ |M ′

3|+ |M ′
5|+ |M ′

7|−
− |M ′

2 ∩M ′
3| − |M ′

2 ∩M ′
5| − |M ′

2 ∩M ′
7| − |M ′

3 ∩M ′
5| − |M ′

3 ∩M ′
7| − |M ′

5 ∩M ′
7|+

+ |M ′
2 ∩M ′

3 ∩M ′
5|+ |M ′

2 ∩M ′
3 ∩M ′

7|+ |M ′
2 ∩M ′

5 ∩M ′
7|+ |M ′

3 ∩M ′
5 ∩M ′

7|−
− |M ′

2 ∩M ′
3 ∩M ′

5 ∩M ′
7|.

We have shown some facts about sets related to our sets M ′
k on the previous homework. In

particular, Mk was the set of all multiples of k, and if p and q are two different primes, we
showed that Mp ∩ Mq = Mpq This fact transfers to our “primed” versions of the sets, i.e., we
have M ′

p ∩M ′
q = M ′

pq for any primes p and q. In fact, this generalizes even more. For any set of
distinct primes p1, p2, . . . , pr, we have M ′

p1
∩M ′

P2
∩ · · · ∩M ′

pr
= Mp1p2···pr . Hence, we can rewrite

our expression for |M ′
2 ∪M ′

3 ∪M ′
5 ∪M ′

7| as follows.

|M ′
2 ∪M ′

3 ∪M ′
5 ∪M ′

7| = |M ′
2|+ |M ′

3|+ |M ′
5|+ |M ′

7|−
− |M ′

6| − |M ′
10| − |M ′

14| − |M ′
15| − |M ′

21| − |M ′
35|+

+ |M ′
30|+ |M ′

42|+ |M ′
70|+ |M ′

105|−
− |M ′

210|.

The last two sets in the expression above are actually empty. There are no multiples of 105 or 210
that are at most 100. In general, the largest multiple of k that belongs to M ′

k is ⌊100/k⌋, and we
can use this to find the number of integers that are at most 100 and are multiples of at least one
of our primes.

|M ′
2 ∪M ′

3 ∪M ′
5 ∪M ′

7| = 50 + 33 + 20 + 14−
− 16− 10− 7− 6− 4− 2+

+ 3 + 2 + 1 + 0−
− 0

= 78.

We need to subtract 4 from this number because M ′ contains four primes. It follows that there are
74 integers between 2 and 100 that are not primes, so there are 99− 74 = 25 primes between 2 and
100. ⊠

The example we just worked out seemed to be a lot of work. Indeed, for primes up to 100,
carrying out the sieve of Eratosthenes could be a faster way. However, for finding the number of
primes up to n for a large n, it would be faster to use our inclusion-exclusion strategy because
just writing down all integers from 2 to n would take a long time. What makes inclusion-exclusion
appealing for this is that we can characterize all the intersections that arise during the computation.
This saves a considerable amount of work.

27.2 Pigeonhole Principle

The pigeonhole principle is not a counting technique, but it is a powerful tool, so it deserves
mentioning now. It often gets used after we find the cardinality of some set.

2

Lecture 27: Combinatorial Arguments 27.3. Combinatorial Arguments

Theorem 27.1 (Pigeonhole principle). Let S and T be sets such that |T | > |S|. Then for every

total function f : T → S, there are at least two elements in T that map to the same element of s
under f .

Before we see an application, let’s discuss why this is called the pigeonhole principle. In the
theorem above, think of the elements of T as pigeons, and of elements of S as pigeonholes. Since
|T | > |S|, there are more pigeons than pigeonholes, so after all pigeons enter some pigeonhole, there
has to be at least one hole that contains at least two pigeons.

Example 27.2: The UW-Madison student ID-numbers are 10 digits long, and each digit is an integer
between 0 and 9. The smallest the sum of those digits can be is 0 (when all digits are zero), and
the largest the sum can be is 90 (when all digits are nine). Thus, there are 91 possibilities for the
sum of the digits in a UW-Madison student ID number.

Let S be the set of all possible digit sums of student ID numbers. We have just seen that
|S| = 91. There are 95 students enrolled in CS/Math 240 right now. Let T be the set of all
students enrolled in CS/Math 240. Since |T | > |S|, the pigeonhole principle implies that there are
at least two students in CS/Math 240 whose student ID numbers have the same digit sum. ⊠

We remark that regardless of its simplicity, the pigeonhole principle is quite a powerful tool
that is used throughout mathematics. Its power stems from the fact that it makes no assumptions
whatsoever about the sets S and T , and that all we need in order to apply it is to know |S| and
|T |.

The drawback is that since we don’t know anything about the sets S and T besides their
cardinalities, we cannot find two elements of T that map to the same element of S. The pigeonhole
principle merely asserts their existence, but does not give us a way of finding them. Thus, arguments
using the pigeonhole principle are nonconstructive.

This is contrary to, say, the proof that there is a finite state automaton for the language
L(M1) ∪ L(M2) where M1 and M2 are finite state automata. In Lecture 23, we did not only prove
the existence of a finite state automaton. The proof of its existence was constructive, that is, we
actually constructed a finite state automaton for the language L(M1) ∪ L(M2).

27.3 Combinatorial Arguments

As we mentioned at the beginning of lecture, combinatorial reasoning is a way of deriving identities
or inequalities by counting a set in two different ways. We can think of it as another proof technique.
This technique is best explained on examples.

We have actually seen a combinatorial argument before. In Lecture 19 we showed that the graph
K5 was not planar by counting the number of edge-face pairs (e, f) such that e is on the border of
f in two different ways. First, we added up the numbers of edges on the border of each face, and
then, for each edge, we added up the numbers of faces that have that edge on their border. This led
to two different bounds on the number of the pairs in (e, f), and ultimately gave us a contradiction
showing that the graph K5 is not planar.

27.3.1 Equating Two Binomial Coefficients

Let’s start with a simple example that illustrates the technique.

Proposition 27.2. For all integers n and k,
(

n
k

)

=
(

n
n−k

)

.

First let’s see a proof without combinatorial reasoning.

3

Lecture 27: Combinatorial Arguments 27.3. Combinatorial Arguments

First proof. By definition,
(

n
k

)

= n!
(n−k)!·k! , and

(

n
n−k

)

= n!
(n−(n−k))!(n−k)! =

n!
k!·(n−k)! . We see that the

expressions for the two binomial coefficients are the same.

And now let’s see a proof that uses combinatorial reasoning.

Second proof. Let S be the set of all k-element subsets of a set of n elements. We can describe this
set by saying which k elements belong to it, and also by saying which n− k elements are the ones
that do not belong to it. For example, if n = 5 and k = 2, the statements “elements 1 and 3 belong
to the subset” and “elements 2, 4 and 5 do not belong to the subset” describe the same subset of
{1, . . . , 5}.

We have
(

n
k

)

ways to pick the k elements that are in the subset, and we have
(

n
n−k

)

ways to pick

the n− k elements that are not in the subset. This means that
(

n
k

)

=
(

n
n−k

)

.

The second proof looks more complicated than the first one. Indeed, combinatorial reasoning
is a little bit of an overkill for this problem. However, this example is good for illustrating the
technique. Now we look at a more involved example.

27.3.2 Pascal’s Identity

Pascal’s identity is another relationship between binomial coefficients. It says the following.

Proposition 27.3 (Pascal’s identity). For any integers n and k,
(

n
k

)

=
(

n−1
k−1

)

+
(

n−1
k

)

.

Before we prove it, let’s see an application that can be used to construct all binomial coef-
ficients out of binomial coefficients where the “top” value is smaller. Let’s arrange all the bino-
mial coefficients in a triangle in the following way. One row of the triangle consists of the list
(

n−1
0

)

,
(

n−1
1

)

, . . . ,
(

n−1
n

)

. The next row contains the values of the binomial coefficients with the
“top” entry n, again listed in order of the “bottom” entry:

(

n
0

)

,
(

n
1

)

, . . . ,
(

n
n

)

. We write it so that
(

n
k

)

is between
(

n−1
k−1

)

and
(

n−1
k

)

. That is, the configuration of those three binomial coefficients is as
shown in Figure 27.1a. We can see the first five rows of the triangle obtained this way in Figure
27.1b, and show the values of the coefficients in Figure 27.1c. In order to obtain the next row, we
can write down ones at the beginning and the end of that row, and then compute the entries in
between by adding up two entries from the row above.

The entries at the beginning and end of each row do not follow the pattern of Figure 27.1a.
One of the coefficients in the row above

(

n
0

)

is missing for n ≥ 1. We treat that missing coefficient
as zero. This makes sense because

(

n
k

)

stands for the number of ways we can pick a subset of k
elements out of an n-element set. There are zero ways to pick −1 elements out of n, and also zero
ways to pick n+1 elements out of n. Thus, defining

(

n
k

)

to be zero whenever k < 0 or k > n makes
sense.

Proof of Proposition 27.3. Let S be the set of all sets of k elements from {1, . . . , n}. The left-hand
side,

(

n
k

)

, counts the cardinality of S the obvious way.
There is another way to find the cardinality of S. Write S as the disjoint union S = Snin∪̇Snout

where Snin is the subset of S consisting of all sets that contain the last element n, and Snin is the
subset of S consisting of all sets that don’t contain that element.

Since all sets in Snin contain a total of k elements and n is one of them, we have to pick the
remaining k − 1 elements out of the elements 1 through n − 1. This can be done

(

n−1
k−1

)

ways, so

|Snin | =
(

n−1
k−1

)

.
Now sets in Snout consist of k elements and don’t contain n. Thus, all their elements come from

{1, . . . , n− 1}, which means that |Snout | =
(

n−1
k

)

.

4

Lecture 27: Combinatorial Arguments 27.3. Combinatorial Arguments

(

n−1
k−1

) (

n−1
k

)

(

n
k

)

(a) Configuration of the co-
efficients related by Pas-
cal’s identity.

(

0
0

)

(

1
0

) (

1
1

)

(

2
0

) (

2
1

) (

2
2

)

(

3
0

) (

3
1

) (

3
2

) (

3
3

)

(

4
0

) (

4
1

) (

4
2

) (

4
3

) (

4
4

)

(b) Binomial coefficients in the first
five rows of Pascal’s triangle.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

(c) The values in the first five
rows of Pascal’s triangle. Each
entry is the sum of the two en-
tries above it in the previous row.
If one of the entries is missing, we
treat it as zero.

Figure 27.1: Pascal’s triangle

The sum rule now tells us that |S| =
(

n−1
k−1

)

+
(

n−1
k

)

, and the proof is complete.

27.3.3 Vandermonde’s Identity

Now let’s look at an expression that looks a little more scary.

Proposition 27.4 (Vandermonde’s identity). For any integers n and k,
(

2n
k

)

=
∑k

ℓ=0

(

n
ℓ

)(

n
k−ℓ

)

.

Proof. Let S be the set of all k-element subsets of the set {1, . . . , 2n}. The left-hand side,
(

2n
k

)

,
counts |S| in the obvious way.

There is another way to count the elements of S. Think of a subset as a binary string of length
2n that has k ones in it. Some of the positions we pick for the k ones lie in the first half of the
string, and the rest lie in the second half. In particular, if ℓ lie in the first half, k − ℓ lie in the
second half. Let Sℓ be the set of all strings of length 2n that contain k ones, ℓ of which are in
positions 1 through n (and k − ℓ of which are in positions n + 1 through 2n). Since we can place
any number of ones between 0 and k in the first half of the string, we have S as the disjoint union
S = ˙⋃

0≤ℓ≤kSℓ.
A string with ℓ ones in positions 1 through n and k − ℓ ones in positions n + 1 through 2n

corresponds to a subset of {1, . . . , 2n} consisting of ℓ elements from {1, . . . , n} and k − ℓ elements
from {n + 1, . . . , 2n}. We can pick ℓ elements out of {1, . . . , n}

(

n
ℓ

)

ways, and we can pick k − ℓ
elements out of {n + 1, . . . , 2n} ways. We can combine the two choices any way we want, so the
product rule implies that we can pick an element of Sℓ

(

n
ℓ

)(

n
k−ℓ

)

ways. The sum rule then implies

that |S| = ∑k
ℓ=0

(

n
ℓ

)(

n
k−ℓ

)

.

5

