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1 Division Algorithm

Think back to the time you were dividing one number by another at school. At some point, you
learned a procedure for dividing n by some number k. This method gave you a quotient q and a
remainder r.

Combining n, k, q and r into one equation gives us

n = qk + r where 0 ≤ r < k. (1)

For example, 70÷15 = 4 with remainder 10 (notice that the remainder is indeed between 0 inclusive
and 15 exclusive), and we can write 70 = 4 · 15 + 10.

In fact, there is exactly one pair of q and r that satisfies (1) for any given n and k.

Theorem 1. For any integers n and k, there exist unique integers q and r that satisfy (1).

Proof. Let n and k be given. We first show that there exists a pair of integers q and r that satisfy
(1). Afterwards, we show that if two such pairs exist, say q1 and q2, and r1 and r2, then q1 = q2
and r1 = r2.

Let’s start by sketching a proof that there are integers q and r that satisfy (1). We claim that
there is an integer l such that kl < n < k(l + 1). Indeed, take l = ⌊n/k⌋. Then pick q = l and
r = n− kl as our integers that satisfy (1). One could use induction to prove this more formally.

Now we show rigorously that if n = q1k + r1 and n = q2k + r2 with 0 ≤ r1 < k and 0 ≤ r2 < k,
then q1 = q2 and r1 = r2.

Since n = q1k + r1 and n = q2k + r2, we have q1k + r1 = q2k + r2, which we rewrite as

(q1 − q2)k + r1 = r2. (2)

We know that 0 ≤ r2 < k, so
0 ≤ (q1 − q2)k + r1 < k (3)

We argue by cases that (3) implies q1 = q2.
Case 1: q1 < q2. Since q1 and q2 are integers, q1 − q2 ≤ −1, so (q1 − q2)k ≤ k. But then the

first inequality in (3) implies that 0 ≤ −k+ r1, so k ≤ r1. This contradicts the fact that r1 < k, so
we cannot have q1 < q2.

Case 2: q1 > q2. Since q1 and q2 are integers, q1 − q2 > 1, so (q1 − q2)k ≥ k. Then the second
inequality in (3) implies that k + r1 < k, so r1 < 0. This contradicts the fact that r1 ≥ 0, so we
cannot have q1 > q2.

Case 3: Since Case 1 or Case 2 cannot happen, it follows that q1 = q2. Then (2) simplifies to
r1 = r2. This completes the proof because we showed that both q1 = q2 and r1 = r2.
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2 Primes

We start our discussion of primes by introducing the notion of divisibility.

Definition 1 (Divisibility). Let n = qk + r with 0 ≤ r < k. When r = 0, we say that k divides n,
and write k | d to denote this fact. We also say that k is a divisor of n. If r 6= 0, we say that k
does not divide n, and write k ∤ n.

And now we can state what a prime number is.

Definition 2. An integer n ≥ 2 is called prime if its only divisors are 1 and n itself. Otherwise n
is called composite, and it has a divisor that is strictly between 1 and n.

Recall that every integer can be written as a product of primes. We write the prime factorization

of n as pe11 pe22 · · · perr , where p1, p2, . . . , pr are distinct primes, and the exponents e1, e2, . . . , er are
positive integers.

We proved in lecture that every integer has a prime factorization, but include the proof on this
handout for the sake of completeness. As we shall see later, the prime factorization is, in fact,
unique.

Theorem 2. Every integer n ≥ 2 can be written as a product of primes.

Proof. We give a proof by strong induction on n.
Consider the statement P (n): n can be written as a product of primes. We prove P (2) as the

base case, and show for all n ≥ 2 that P (n) implies P (n+ 1).
The base case is P (2), and we can indeed write 2 as a product of primes because 2 is a prime.
Now we prove the induction step, i.e., (∀n ≥ 2)P (n) ⇒ P (n+ 1).
Assume that n can be written as a product of primes. We argue by cases.
Case 1: n+ 1 is prime. In this case, there is nothing to prove.
Case 2: n + 1 is not prime. This means that n + 1 has a divisor k such that 1 < k < n + 1.

Hence, we can write n+1 as n+1 = k · l where k, l ∈ N and 1 < k < n+1. (This is what it means
for a number to have a divisor; also note that this means 1 < l < n + 1.) So now we have n + 1
written as a product of two smaller numbers.

Since k, l ≤ n, the induction hypothesis implies that both k and l have prime factorizations. Let
p1, p2, . . . , pr, q1, q2, . . . , qs be primes, and let e1, e2, . . . , er and f1, f2, . . . , fs be positive integers.
Then we can write the prime factorizations of k and l as

k = pe11 pe22 · · · perr (4)

l = qf11 qf22 · · · qfrr (5)

and combine them in a prime factorization of n+ 1 as

n+ 1 = kl = pe11 pe22 · · · perr qf11 qf22 · · · qfrr , (6)

which completes the proof.

We remark that in (6), it may happen that there are pairs i ∈ {1, . . . , r} and j ∈ {1, . . . , s}

such that pi = qj . We could then combine the factors peii and q
fj
j into p

ei+fj
i so as to get the prime

factorization written exactly in the format we described originally. But this is just a minor detail.
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Note that every prime in the prime factorization of n divides n. To see this, suppose n =
∏r

i=1 p
ei

i

where all the pi are primes and ei ≥ 1 are integers. Then we can rewrite n = pi

(

pe11 · · · pei−1
i · · · perr

)

.

We can use this observation and prime factorizations to prove the following theorem.

Theorem 3. There are infinitely many primes

Proof. We argue by contradiction.
Suppose there are not infinitely many primes. Then we can enumerate all the primes as

p1, p2, . . . , pr for some integer r.
Consider the integer

n =
r
∏

i=1

pi + 1. (7)

By Theorem 2, n has a prime factorization pe11 pe22 · · · pess where pi is prime and ei ≥ 1 is an integer for
all i ∈ {1, . . . , s}. Since every prime in n’s prime factorization divides n, and the prime factorization
of n consists of at least one prime (otherwise n would be 1), n has a prime divisor. But we see
from (7) that no prime divides n because we can write n = (p1p2 · · · pi−1pi+1 · · · pr)pi + 1 for any
i ∈ {1, . . . , r}. This is a contradiction. The assumption we made was that there were only finitely
many primes, which means that this assumption is wrong. It follows that there are infinitely many
primes.

2.1 Greatest Common Divisor and Least Common Multiple

Sometimes it is more convenient to add redundant terms to the prime factorization. This is useful
when we use prime factorizations of two numbers to construct another number. Let p1, p2, . . . , pr
be primes and let e1, e2, . . . , er be non-negative integers such that n = pe11 pe22 · · · perr . Note that this
form of prime factorization is no longer unique because we can multiply by an arbitrary number of
primes raised to the zeroth power and not change the product on the right-hand side.

We use this redundant form to describe the greatest common divisor and the least common
multiple of two integers.

Definition 3. The greatest common divisor of integers a and b, denoted gcd(a, b), is the largest

integer d such that d | a and d | b. Furthermore, if c | a and c | b, then c | d.

Definition 4. The least common multiple of integers a and b, denoted lcm(a, b), is the smallest

integer m such that a | m and b | m. Furthermore, if a | n and b | n, then m | n.

We can express both of these integers using prime factorizations.
As a warmup, let’s find gcd(60, 72) and lcm(60, 72). We can do this using prime factorizations.

Write 60 = 22 · 31 · 51 and 72 = 23 · 32. Let’s expand the prime factorization of 72 so that the
list of primes in prime factorization of both 60 and 72 is the same. We get 72 = 23 · 32 · 50. Note
that gcd(60, 72) = 12 = 22 · 31, and lcm(60, 72) = 360 = 23 · 32 · 51. Let’s write all four prime
factorizations together and observe a pattern.

60 = 22 · 31 · 51

72 = 23 · 32 · 50

gcd(60, 72) = 22 · 31 · 50

lcm(60, 72) = 23 · 32 · 51
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The pattern we see is that to let the greatest common divisor, we take the smaller of the
exponents ei and fi for each i, and we take the larger of the exponents ei and fi for each i to get
the least common multiple. More formally, if

a = pe11 pe22 · · · perr

b = pf11 pf22 · · · pfrr

then

gcd(a, b) =
r
∏

i=1

p
min(ei,fi)
i

lcm(a, b) =
r
∏

i=1

p
max(ei,fi)
i
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