Homework 1

Instructors: Holger Dell and Dieter van Melkebeek
This homework is due at the beginning of class on $4 / 3 / 2013$. Good luck!

1. An exact- k-CNF formula is a CNF-formula in which every clause consists of exactly k literals involving k distinct variables.
Let $k(n)=\lceil c \cdot \log n\rceil$, where c is an arbitrary positive constant. Given an exact- $k(n)$-CNF formula φ on n variables, show how to find an assignment that satisfies at least a fraction $1-\frac{1}{2^{k(n)}}$ of the clauses of φ on a deterministic machine with a polynomial number of processors in polylogarithmic parallel time.
2. In class we constructed a β-bias generator on $\{0,1\}^{r}$ with seed length $2 \log (r)+O(\log (1 / \beta))$. The goal of this problem is to improve the seed length to $\log (r)+O(\log (1 / \beta))$. In order to do so, you can make use of a polynomial-time computable linear error-correcting code $\mathcal{C}=\left(C_{k}\right)_{k \in \mathbb{N}}$ with $C_{k}:\{0,1\}^{k} \rightarrow\{0,1\}^{n(k)}$ such that the rate and relative distance of C_{k} are at least some positive constant.
(a) Given a positive integer k and a positive real ϵ, construct a linear error-correcting code $C_{k}^{\prime}:\{0,1\}^{k} \rightarrow \Sigma^{n(k)}$ with relative distance at least $1-\epsilon$, where Σ is an alphabet of size $\left(\frac{1}{\epsilon}\right)^{O(1)}$. The family $\mathcal{C}^{\prime}=\left(C_{k}^{\prime}\right)_{k \in \mathbb{N}}$ should be computable in time polynomial in k and $\frac{1}{\epsilon}$. Hint: Expander-based confidence boosting.
(b) Construct a β-bias generator over $\{0,1\}^{r}$ with seed length $\log (r)+O(\log (1 / \beta))$ that is computable in time polynomial in r and $\frac{1}{\beta}$.
3. Consider the following randomized affinity test for a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$: Pick x and y uniformly from $\{0,1\}^{n}$, and accept if and only if $f(x)+f(y)=f(0)+f(x+y)$.
(a) Show that the probability of acceptance equals $\frac{1}{2} \cdot\left(1+g(0) \sum_{a \in\{0,1\}^{n}} \hat{g}(a)^{3}\right)$, where $g(x) \doteq(-1)^{f(x)}$.
(b) Conclude that if the probability of acceptance is at least p then there exists an affine function that agrees with f in at least a fraction p of the domain $\{0,1\}^{n}$.
(c) Suppose that we pick x from the uniform distribution as before, but y from a β-bias distribution. Generalize the arguments from parts (a) and (b) to this setting.
4. Recall the problem from the first lecture about approximating the average μ of a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with respect to the uniform distribution.
For any positive reals δ and ϵ, give a randomized algorithm that outputs an estimate that, with probability at least $1-\delta$, differs from μ by no more than ϵ. Your algorithm should use no more than $n+O\left(\log \frac{1}{\delta}\right)$ random bits, query f in no more than $O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$ points, and run in time polynomial in $n, \frac{1}{\epsilon}$ and $\log \frac{1}{\delta}$.
For every positive integer n and positive real λ, you can assume the existence of a regular graph on 2^{n} vertices with spectral expansion at least $1-\lambda$ and degree $O\left(1 / \lambda^{2}\right)$ such that the neighbors of a given vertex can be computed in time polynomial in n and $1 / \lambda$.
5. [optional]

In Lecture 4 we saw two different constructions of pairwise independent generators, namely a simple one in Theorem 2, and a somewhat more involved one in Lemma 5 and Theorem 6 (for $k=2$). I believe the two constructions are related, but I currently do not know the precise connection. This problem asks you to investigate it.
For the construction from Theorem 2 , you can consider its generalization $G_{r}: \Sigma^{(m+1)} \rightarrow \Sigma^{r}$ with $\Sigma=\mathbb{F}_{2^{p}}$ and $r=2^{m}$ that takes $\sigma=\left(\sigma_{i}\right)_{i=1}^{m+1}$ to $\left(\sum_{i=1}^{m} x_{i} \sigma_{i}+\sigma_{m+1}\right)_{x \in\{0,1\}^{m}}$. For the other construction, consider the mapping $G: \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}^{q}$ with $q=\left(2^{p}\right)^{m}$ that takes (a, b) to $(a y+b)_{y \in \mathbb{F}_{q}}$, where the arithmetic is over \mathbb{F}_{q}.
Feel free to make further simplifying assumptions, like an appropriate choice of an irreducible polynomial for the underlying field operations.

