
CS 880: Pseudorandomness and Derandomization 2/11/2013

Lecture 6: Small-Bias Generators

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Kevin Kowalski

In the previous lectures, we discussed k-wise uniform generators, which can be viewed as ε-PRGs
for k-wise uniformity with ε = 0 – the pseudorandom distributions they induce look perfectly
random if we restrict our attention to any k components. In this lecture we develop ε-PRGs for
polynomials of low degree d with ε > 0. Modulo the error ε, they can be viewed as generalizations
of d-wise uniform generators. We focus on PRGs for the special case d = 1, which are known as
small-bias generators. Based on a connection with error-correcting codes, we present a construction
with seed length O(log(r/ε)). The notions and constructions apply to polynomials over any finite
field Fq but we only discuss the case q = 2.

1 Pseudorandom Generators for Low-Degree Polynomials

A distribution Dr on {0, 1}r is ε-pseudorandom for polynomials of degree d if, for every polynomial
p : {0, 1}r → {0, 1} of degree at most d,

dstat
(
p(Dr), p(Ur)

)
≤ ε . (1)

An ε-PRG for polynomials of degree d is a collection of mappings G = (Gr)r∈N with Gr : {0, 1}`(r) →
{0, 1}r such that Gr(U`) is ε-pseudorandom for polynomials of degree d. Intuitively, a PRG for
polynomials of degree d fools all algorithms that only use their bits of randomness after they
are passed through a polynomial of degree at most d. In other words, the output A(x, ρ) of the
algorithm on input x and random bit sequence ρ can be written as f(x, px(ρ)), where f is an
arbitrary function and px is a polynomial of degree at most d whose coefficients may depend on
the input x in an arbitrary way.

Relationship to k-wise uniform generators. Distributions that are pseudorandom for poly-
nomials of degree k are “almost” k-wise uniform, in a sense we will describe below.

Recall that for a k-wise uniform distribution Dr, any indices i1, . . . , ik ∈ [r], and bits b1, . . . , bk ∈
{0, 1}, we have that

1

2k
= Pr

ρ←Dr

[
ρi1 = b1 ∧ · · · ∧ ρik = bk

]
= Pr

ρ←Dr

 k∏
j=1

(ρij − bj) = 1


= Pr [pb(Dr) = 1] ,

where pb(ρ)
.
=
∏k
j=1(ρij − bj) is interpreted as a degree-k polynomial on the variables ρ1, . . . , ρr (in

which only the variables with indices i1, . . . , ik appear). What we have just shown is that every
k-wise uniform generator Dr fools all degree-k polynomials of the form pb without error, that is,∣∣∣Pr [pb(Dr) = 1]− Pr [pb(Ur) = 1]

∣∣∣ = 0 .

1



Conversely, if Dr is ε-pseudorandom for polynomials of degree k, then in particular it ε-fools the
polynomials pb, that is, it has the property that∣∣∣Pr [pb(Dr) = 1]− Pr [pb(Ur) = 1]

∣∣∣ ≤ ε ,
since the statistical distance dstat

(
pb(Dr), pb(Ur)

)
bounds the difference between the two distri-

butions in the probability they assign to any event. When we sum over all possible choices of
b ∈ {0, 1}k, we have that

dstat(Dr|i1,...,ik , Uk) =
1

2

∑
b

∣∣∣Pr [pb(Dr) = 1]− Pr [pb(Ur) = 1]
∣∣∣ ≤ 2k−1 · ε . (2)

For ε = 0, this implies that every ε-pseudorandom distribution for degree-k polynomials is also
k-wise uniform. What we get for ε > 0 is a generalization of k-wise uniform distributions. While
the moniker “k-wise uniform” requires that the distribution be perfectly uniform when looking at
any k-subset, “pseudorandom for degree-k polynomials” implies that the distribution is close to
uniform. In the next lecture we will strengthen this connection in two ways: (i) it turns out that
being ε-pseudorandom for degree-1 polynomials is sufficient, and (ii) we can improve the right-hand
side of (2) to

√
2k − 1 · ε.

From degree one to higher degree. There is another sense in which pseudorandomness for
degree-1 polynomials is sufficient. Once we have a distributionDr that is pseudorandom for degree-1
polynomials, we can obtain a distribution that is pseudorandom for degree d by taking d indepen-
dent samples from Dr and outputting their component-wise XOR. The following theorem gives us
an upper bound on how the error deteriorates in this construction.

Theorem 1. Let Dr be a distribution on {0, 1}r that is ε-pseudorandom for polynomials of degree 1.
Then for every integer d ≥ 1, the XOR of d independent samples from Dr is ε′-pseudorandom for
polynomials of degree d, where ε′ = 16 · ε1/2d−1

.

We refer to [Vio09] for a proof of Theorem 1. Note that the bound on the error ε′ quickly converges
to 1 as d increases. It is open whether this behavior is inherent or whether the bound can be
improved. Theorem 1 is known to be optimal in terms of the number of samples: d− 1 samples do
not suffice [BV07].

2 Small-Bias Generators

We now consider pseudorandom generators for polynomials of degree 1, which are equivalent to
so-called small-bias generators. We begin with the definition of the bias of a distribution, and then
prove the just-mentioned connection to generators for polynomials of degree 1.

Definition 1 (Bias of a distribution). Let Dr be a distribution on {0, 1}r and a ∈ {0, 1}r. The
bias of Dr with respect to a is

biasa(Dr)
.
= Pr

[
〈a,Dr〉 = 0

]
− Pr

[
〈a,Dr〉 = 1

]
.

We say that Dr has bias at most β if
∣∣biasa(Dr)

∣∣ ≤ β holds for all a ∈ {0, 1}r \ {0r}.

2



Note that the bias of a distribution Dr with respect to 0r is always 1, and that the uniform
distribution has bias 0. In fact, as we will see next lecture, the uniform distribution is the only
distribution that has bias 0, and having small bias implies being close to the uniform distribution
in statistical distance, although there is a quantitative loss. As such, distributions with small bias
are natural substitutes for the uniform distribution and, depending on how the algorithm uses its
randomness, may work as well as the uniform one. Moreover, they can be generated from a small
number of truly random bits, and thus form the basis for PRGs, which we refer to as small-bias
generators.

Definition 2 (Small-bias generator). A generator Gr : {0, 1}` → {0, 1}r whose output distri-
bution Gr(U`) has bias at most β is called a β-bias generator.

We are ready to state and prove the connection between small-bias generators and PRGs for
polynomials of degree 1.

Proposition 2. For all ε ≥ 0, a distribution Dr is ε-pseudorandom for polynomials of degree 1 if
and only if Dr has bias at most β = 2ε.

Proof. First note that all polynomials p : {0, 1}r → {0, 1} of degree at most one are of the form
p(ρ) = 〈a, ρ〉 + b for some a ∈ {0, 1}r and b ∈ {0, 1}. Furthermore, p is constant if and only if
a = 0r, and in this case, (1) trivially holds for any ε ≥ 0.

In the case that a 6= 0r, we have

dstat
(
p(Dr), p(Ur)

)
=
∣∣∣Pr[p(Dr) = 0]− Pr[p(Ur) = 0]

∣∣∣
=
∣∣∣Pr[p(Dr) = 0]− 1/2

∣∣∣
=

∣∣∣∣Pr[p(Dr) = 0]− Pr[p(Dr) = 0] + Pr[p(Dr) = 1]

2

∣∣∣∣
=

1

2

∣∣∣Pr[p(Dr) = 0]− Pr[p(Dr) = 1]
∣∣∣

=
1

2

∣∣biasa(Dr)
∣∣

In particular, this implies that, for all a 6= 0r and all b,

dstat
(
p(Dr), p(Ur)

)
≤ ε ⇐⇒

∣∣biasa(Dr)
∣∣ ≤ 2ε = β.

Since this holds for all non-constant polynomials p of degree at most 1 and the case of constant
polynomials p is trivial, the statement follows from the definition of ε-pseudorandomness for poly-
nomials of degree 1, and the definition of the bias of a distribution. �

3 Connection with Error-Correcting Codes

Just as in the case of k-wise uniform generators, small-bias generators have a close connection to
error-correcting codes. Given a β-bias generator G : {0, 1}` → {0, 1}r, we can write the function
table of Gr as a 2`× r matrix M over {0, 1} such that the i-th row is the bit vector G(σi), where σi

3



denotes the i-th seed in some ordering of {0, 1}`. For example, the generator G with the following
function table would produce the corresponding matrix M :

σ G(σ)

σ1 110 . . . 1
σ2 011 . . . 0
...

...
σ2` 101 . . . 1

−→ M =


1 1 0 · · · 1
0 1 1 · · · 0
...

...
...

. . .
...

1 0 1 · · · 1


We can view this matrix as the generator matrix of some linear error-correcting code. Given a
plain-text word a ∈ {0, 1}r, the corresponding codeword under the above code is

M · a =
[
〈a,G(σ)〉

]
σ∈{0,1}`

.

This implies that a can be viewed as a mask, and applying M to a computes the parity of each row
of M over the positions at which a is 1. Since G is at most β-biased, the relative weight of Ma (i.e.,
the number of 1’s in Ma divided by the length of the vector) must be in the range [12 −

β
2 ,

1
2 + β

2 ].
Thus, the requirement that G has small bias is equivalent to the condition that the code generated
by M is such that the relative weight of every nonzero codeword is β/2-close to 1/2. A code with
the latter property is called β/2-balanced.

Proposition 3. Let G : {0, 1}` → {0, 1}r be a generator and M be the (2` × r)-matrix over {0, 1}
consisting of the rows G(σ) for σ ∈ {0, 1}`. Then G has bias at most β if and only if all nonzero
codewords of the linear code generated by M have a relative weight in the range [12 −

β
2 ,

1
2 + β

2 ].

4 Construction

The connection with error-correcting codes given by Proposition 3 suggests that we can construct
a small-bias generator by finding an appropriate error-correcting code. We now develop two closely
related small-bias generators based on that connection.

Choosing a suitable code. The Hadamard code has the property that every non-zero codeword
has relative weight exactly 1/2, so at first glance it might seem like an attractive choice. However,
it is inappropriate here because the generator matrix has size 2r × r, which means that the seed
length of the PRG is ` = r. Indeed, the induced generator would output “pseudorandom” strings
that are exactly as long as the seed and, in fact, implement the identity mapping. Since the purpose
of a pseudorandom generator is to reduce the number of random bits required, the Hadamard code
clearly will not suffice.

Concatenating the Hadamard code with the Reed–Solomon code, however, does give a useful
pseudorandom generator. Recall from Lecture 3 that the Hadamard and Reed–Solomon codes are
linear, with characteristics

Reed–Solomon [q, k, q − k + 1]q and
Hadamard [q, log2 q, q/2]2 .

The concatenated code is constructed by first applying the Reed–Solomon generator matrix to
each block of size k in the input (interpreted as a vector of elements in Fq), and then applying

4



the Hadamard generator matrix to each block of size log2 q in the intermediate code (interpreted
as a vector of elements in F2) to get the output. In particular, this code has characteristics
[q2, k log2 q, δ · q2]2, where

δ ≥ q − k + 1

q
· 1

2
=

1

2
− k − 1

2q
.

The fact that the relative distance of the concatenated code is close to 1/2 means that no
codeword has relative weight much below 1/2. In principle, this still leaves the possibility that
some codewords have relative weight significantly larger than 1/2. However, since every codeword
of the Hadamard code has relative weight at most 1/2, every codeword of a concatenation with the
Hadamard code has relative weight at most 1/2.

Thus, by choosing q and k so that (k−1)/2q ≤ β/2, or equivalently, (k−1)/q ≤ β, the generator
matrix of the code described above gives us a function table for a generator with bias β.

Selecting suitable parameters. Now, we would like to formulate our choice of q and k in terms
of β (the bound on the bias) and r (the length of the output string) while keeping ` (the length of
the random seed we need) as small as possible.

Recall that our final code has characteristic [q2, k log2 q, δ · q2]2, so the generator matrix of
the code has dimensions q2 × k log2 q. Matching the dimensions of the generator matrix with the
dimensions of the function table, we obtain the equalities

q2 = 2` ⇐⇒ ` = 2 log2 q ,

k log2 q = r ⇐⇒ r = k log2 q . (3)

Since we do not have to make full use of the pseudorandom bits generated by the generator, the
second equality can be rewritten as the inequality r ≤ k log2 q. For simplicity of analysis, we will
fix k = r, though we could get a shorter relative seed length by using all the pseudorandom bits.
For future reference, note that dropping the factor log2 q corresponds to only using binary strings
{0, 1}k rather than all of Fkq as the messages to which we apply the Reed–Solomon code.

With these equalities, we can then write the condition k−1
q ≤ β as

k − 1

q
≤ β

⇐⇒ q ≥ r − 1

β
,

so if we choose q to be the smallest power of two that is at least (r − 1)/β, we get that ` ∈
O(log(r/β)). Since all the underlying computations can be performed efficiently, we conclude the
following.

Theorem 4. For every positive integer r and positive real β, there exists an efficiently computable
β-bias generator G : {0, 1}` → {0, 1}r with ` = O

(
log(r/β)

)
.

By the fact that the XOR of d small-bias generators fools degree d polynomials (Theorem 1) and the
equivalence between small-bias generators and PRGs for polynomials of degree 1 (Proposition 2),
Theorem 4 yields the following corollary.

5



Corollary 5. For every positive integers d and r, and every real ε > 0, there exists an efficiently
computable ε-pseudorandom generator G : {0, 1}` → {0, 1}r for polynomials of degree d with ` =
O
(
d · log(r) + d2d · log(1/ε)

)
.

Note that the seed length in Corollary 5 is only nontrivial for sub-logarithmic degree d.
In order to figure out just how “efficiently computable” the small-bias generator from Theorem 4

is, we explicitly construct the generator matrix of the corresponding code.

Explicit construction. We first analyze the exact construction as described above, i.e., the one
where we do not drop the factor log2 q in (3) as we did in our simplified analysis. We need to
explicitly construct the generator matrix of the concatenation of the Reed–Solomon code with the
Hadamard code. Since both codes are linear, we might expect the final generator matrix to be a
simple product of matrices for each of the two codes, but the larger alphabet of the Reed–Solomon
code (i.e., Fq as opposed to {0, 1}) makes this more complicated.

Recall that the generator matrix GRS for the Reed–Solomon code is a q×k Vandermonde matrix
over Fq, where there is one row for every element of Fq, and the row corresponding to u ∈ Fq consists
of the elements [

u0 u1 · · · uk−1
]
, (4)

and all multiplication is performed over the field Fq. Let m = log2 q, so that each element u ∈ Fq
can be represented as a binary vector of size m. The [q, k]q Reed–Solomon code can also be viewed
as a [qm, km]2 code. We first need to figure out the generator matrix for the latter code.

In order to do so, we associate to each u ∈ Fq the polynomial

u(ξ)
.
=

m∑
p=1

upξ
p−1,

where each up ∈ {0, 1}. These polynomials have the nice property that for any a, b, c ∈ Fq,

a · b = c ⇐⇒ a(ξ) · b(ξ) = c(ξ),

where the multiplication on the left takes place over Fq, and the polynomial multiplication on the
right takes place over F2[ξ] modulo some fixed irreducible polynomial of degree m. Note that for
any fixed b, the coefficients of c(ξ) are linear combinations over F2 of the coefficients of a(ξ). Thus,
seen as vectors of size m over F2, we can write c = Mb · a, where Mb is an (m×m)-matrix over F2

that corresponds to multiplication with b (for the chosen irreducible polynomial).
Given a plain-text word x ∈ Fkq , its encoding y under GRS is given by

y =

 k∑
j=1

xju
j−1


u∈Fq

.

When the components yu of y are interpreted as vectors of length m over F2, they can be written
as

yu =
k∑
j=1

Muj−1 · xj ,

6



where the matrix-vector product is computed over F2. Thus, for every row (4) of the generator
matrix for the [q, k]q Reed–Solomon code, there are m rows in the generator matrix for the corre-
sponding [qm, km]2 code, and they are obtained by replacing every entry v

.
= uj−1 in (4) by Mv.

For a given ordering of the elements u ∈ Fq, this gives us explicit matrices Tij ∈ Fm×m2 such that

y =


T11 T12 · · · T1k
T21 T22 · · · T2k

...
...

. . .
...

Tq1 Tq2 · · · Tqk

 · x,
so the revised Reed–Solomon matrix is equal to the original one, except with each (i, j)-entry
replaced with the corresponding matrix Tij .

All that remains is to use the Hadamard code to encode y. We apply the [q,m]2 Hadamard
code to each of the q components yi of y, where we view yi as a vector of length m over F2. Let H
be the generator matrix for the [q,m]2 Hadamard code. Since the Hadamard code is linear over F2,
we have that

Had(y) =


Hy1
Hy2

...
Hyq

 =


H ·

(∑k
j=1 T1jxj

)
H ·

(∑k
j=1 T2jxj

)
...

H ·
(∑k

j=1 Tqjxj

)



=


∑k

j=1HT1jxj∑k
j=1HT2jxj

...∑k
j=1HT1jxj

 ,
so our final generator matrix is the q2 ×mk matrix

G =


HT11 HT12 · · · HT1k
HT21 HT22 · · · HT2k

...
...

. . .
...

HTq1 HTq2 · · · HTqk

 ,
where Tij equals the multiplication matrix Muj−1 for u the ith element of Fq in the underlying
ordering.

Simpler explicit construction. Next we analyze the variant of the construction that corre-
sponds to dropping the log2 q factor in (3), which corresponds to only considering plain-text words
x ∈ {0, 1}k rather than Fkq . Again, we start with the Reed–Solomon generator GRS, but instead
of replacing each entry uj−1 by the (m ×m)-matrix Muj−1 over F2 that represents multiplication
with uj−1 over Fq, we replace it by the (m × 1)-matrix over F2 that represents uj−1 as a column
vector of length m over F2. This gives us a (qm×k)-matrix over F2. Applying the Hadamard code
as before gives us the final generator matrix where the q rows corresponding to u ∈ Fq are given by[

H · 1 H · u H · u2 · · · H · uk−1
]
,

7



where each uj−1 represents a vector of length m over F2.
This variant only produces a (q2 × k)-matrix rather than a (q2 × km)-matrix. In terms of the

corresponding small-bias generator given by Proposition 3, this means a reduction in the number of
pseudorandom bits r by a factor of m = log2 q. However, the entries of the matrix and therefore the
output of the generator are considerably easier to describe. Recall that the Hadamard encoding of
a binary vector of length m consists of the inner product with every vector v ∈ Fm2 over F2. Thus,
we can index the rows of the generator matrix by (u, v) ∈ Fm2 × Fm2 . Equivalently, the small-bias
generator G′ takes a seed of length 2m and parses it as two random strings u, v, each of length m.
The corresponding output is then

G′(u, v) =
(
the v-th entry of Huj−1

)k
j=1

=
(
〈uj−1, v〉

)r
j=1

. (5)

Note that u is first viewed as an element of F2m and raised to the power (j − 1) in that field.1

Then uj−1 is viewed as an element of Fm2 and we take the inner product of that vector with v ∈ Fm2 .
The construction is elegant enough to merit its own statement.

Theorem 6. Let G′ : {0, 1}m × {0, 1}m → {0, 1}r be defined by (5), where uj−1 denotes u, viewed
as an element of F2m, raised to the power j − 1. Then G′ has bias at most β, where β = r−1

2m .

The earlier derivation proves Theorem 6. However, it is instructive to revisit the argument and
directly show that G′ has small bias. Let D = G′(U2m) and consider any nonzero vector a ∈ {0, 1}r.
We want to show that

∣∣biasa(D)
∣∣ =

∣∣Pr[〈D, a〉 = 0] − Pr[〈D, a〉 = 1]
∣∣ ≤ β holds. By linearity of

the inner product we have that

r∑
j=1

ajG
′(u, v)j =

r∑
j=1

aj〈uj−1, v〉 = 〈pa(u), v〉,

where pa(u) =
∑r

j=1 aju
j−1. Any u for which pa(u) 6= 0 has no net contribution to biasa(D) since

the number of v’s for which 〈pa(u), v〉 = 0 is the same as the number of v’s for which 〈pa(u), v〉 = 1.
Any u for which pa(u) = 0 contributes 1

2m to biasa(D). Since pa is a polynomial of degree at most
r − 1, there are at most r − 1 values u (out of 2m possible) for which pa(u) = 0, and therefore,
biasa(D) is in the range [0, r−12m ]. Since this holds for every a 6= 0, it follows that D has bias at most
β = r−1

2m .

References

[BV07] Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. In Proceedings
of the 48th Annual Symposium on Foundations of Computer Science, FOCS 2007, pages
41–51, 2007.

[Vio09] Emanuele Viola. The sum of d small-bias generators fools polynomials of degree d. Com-
putational Complexity, 18(2):209–217, 2009.

1This presumes the choice of some underlying irreducible polynomial of degree m over F2. Any choice will do.

8


	Pseudorandom Generators for Low-Degree Polynomials
	Small-Bias Generators
	Connection with Error-Correcting Codes
	Construction

