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Lecture 7: Harmonic Analysis

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Gautam Prakriya

In the previous lecture we defined and constructed small-bias generators and mentioned that
they yield “almost” k-wise uniform generators. In this lecture we quantitatively investigate that
connection using harmonic analysis of Boolean functions. We develop the basics of this important
tool and illustrate its versatility with an application to list decoding for the Hadamard code, which
complements our discussion from Lecture 5.

1 Basics of Harmonic Analysis

Classical setting. Harmonic analysis for real- or complex-valued functions on the domain of
the reals, i.e., for functions f : R → R or f : R → C, expresses f in a unique way as a sum,
series, or integral of so-called harmonics. In the classical case, these harmonics are sine and cosine
functions, or complex exponentials. The decomposition can be viewed as a basis transformation
in the vector space of all functions f from the standard function basis to the basis of harmonics.
The transformation is known as the Fourier transform, and has a number of useful properties, chief
among them being the following.

1. It is orthogonal and – provided adequate scaling – even orthonormal, which means that it
preserves angles and distances.

2. It transforms convolutions (defined in Exercise 2 below) into point-wise products, i.e., the
Fourier transform of the convolution of two functions is just the point-wise product of the
Fourier transforms.

Convolutions naturally appear in a number of contexts.

◦ In signal processing, convolutions occur when a filter is being applied to a signal. A filter
is an operation that changes the signal; for example, a filter might smoothen the signal to
dampen small rapid changes. The filter operation can be expressed as the convolution of the
input signal with a function describing the filter.

A straightforward computation of the convolution for signals of length n takes time O(n2).
Alternately, one can first compute the Fourier transform of the operands, then multiply them
point-wise, and finally apply the inverse Fourier transform to the result. Since the Fourier
transform can be computed and inverted in time O(n log n) using the FFT algorithm, and
point-wise products can be computed in time O(n), this yields an O(n log n) algorithm. The
improvement from O(n2) to O(n log n) combined with the ubiquity of convolutions in signal
processing explains the importance of the Fourier transform there.

◦ A context that is more relevant for this course is that of probability theory, where the dis-
tribution of the sum of two independent random variables is given by the convolution of the
individual distributions.
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Generalization. Harmonic analysis with the properties 1 and 2 above has been generalized to
real- or complex-valued functions on certain domains other than the reals. In particular, we consider
domains that form a finite commutative group G, in which case the harmonics correspond to the
characters of G.

Definition 1. A character of a group (G,+) is a homomorphism from (G,+) to the group (C \
{0}, ·) of the complex numbers without zero under multiplication. In other words, a character of G
is a mapping χ : G→ C \ {0} such that

(∀x, y ∈ G) χ(x+ y) = χ(x) · χ(y) .

We consider the case in which G is a finite group. Then one can show in general that the characters
form an orthonormal set with respect to the following inner product on the vector space of all
functions f, g : G→ C:

(f, g)
.
= Ex

[
f(x) · g(x)

]
. (1)

The expectation is with respect to the uniform distribution over G, and x denotes the complex
conjugate of x.

Exercise 1. Show that (1) defines a valid inner product, i.e., for every f, g, h : G → C and
α, β ∈ C

◦ Non-negativity: (f, f) is a nonnegative real, and (f, f) = 0 if and only if f is identically zero.

◦ Linearity: (αf + βg, h) = α(f, h) + β(g, h) and (h, αf + βg) = α(h, f) + β(h, g).

◦ Triangle inequality:
√

(f + g, f + g) ≤
√

(f, f) +
√

(g, g).

Note that the inner product (f, g) is a scaled version of the standard inner product 〈f, g〉 .
=∑

x∈G f(x)g(x), namely (f, g) = 1
|G|〈f, g〉. This scaling makes the characters orthonormal rather

than just orthogonal. In contrast, note that the canonical basis (consisting of all functions x 7→
I[x = a] for a ∈ G) is orthonormal with respect to the standard inner product 〈·, ·〉, but only
orthogonal with respect to (·, ·).

Thus, the set of characters of a finite group G forms an orthonormal set, that is, for all distinct
characters χ and χ′, we have (χ, χ) = 1 and (χ, χ′) = 0. In particular, since functions that are
orthogonal with respect to any valid inner product are linearly independent, we have that the
characters form a linearly independent set in the vector space of all functions f : G → C. In the
case of a finite commutative group G, the number of characters turns out to be equal to the number
of elements in G. Since the dimension of the vector space of all functions f : G → C equals |G|
(as can be seen from the canonical basis mentioned above), this implies that the characters form
a basis. We can associate a character χa with each element a ∈ G. Then every function f can be
expressed uniquely as a linear combination of the characters χa:

f =
∑
a∈G

f̂(a) · χa. (2)

This expression is known as the Fourier expansion of f , the individual coefficients f̂(a) as the
Fourier coefficients of f , and the function f̂ : G→ C as the Fourier transform of f . By taking the
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inner product with χa on both sides of (2), and using the orthonormality of the character basis,
we obtain the following expression for the Fourier coefficients:

f̂(a) = (f, χa) .

By taking the inner product of the Fourier expansion of f with itself, and again using the orthonor-
mality of the character basis, we obtain

(f, f) =
∑
a∈G
|f̂(a)|2 .

This equation is known as Parseval’s equality and it expresses the preservation of distances under
the Fourier transform.

We leave establishing the second chief property of the Fourier transform as an exercise.

Exercise 2. For f, g : G→ C, we define the convolution f ∗ g : G→ C by

(f ∗ g)(x) = Ey
[
f(y) · g(x− y)

]
,

where the expectation is with respect to the uniform distribution over G. Show that (̂f ∗ g)(x) =
f̂(x) · ĝ(x) holds for all x ∈ G.

Boolean setting. For our purposes, G is the group consisting of the Boolean cube {0, 1}n = Fn2
with component-wise addition. In this case, the characters are the parity functions rescaled from
the range {0, 1} to the range {1,−1}. That is, for all a ∈ G,

χa(x) = (−1)〈a,x〉

is a character of G, where 〈a, x〉 =
∑

i aixi is the inner product over F2. The functions χa are
characters because

χa(x+ y) = (−1)〈a,x+y〉 = (−1)〈a,x〉+〈a,y〉 = (−1)〈a,x〉 · (−1)〈a,y〉 = χa(x) · χa(y).

We leave it as an exercise to check that there are no other characters. This also follows from the
general fact that every commutative group has |G| characters and the fact that there are 2n = |G|
distinct functions of the form χa.

We now explicitly prove that the functions χa form an orthonormal basis with respect to the
inner product (·, ·). Since these functions only take on real values and we are only interested in
real-valued functions, we can restrict the range to be R rather than C.

Proposition 1. The functions χa : {0, 1}n → R for a ∈ {0, 1}n defined by χa(x) = (−1)〈a,x〉 form
an orthonormal basis for the vector space of all functions f : {0, 1}n → R with respect to the inner
product (f, g)

.
= E

[
f(x)g(x)

]
, where the expectation is over the uniform distribution of x ∈ {0, 1}n.

Proof. First note that (χa, χb) = E[(−1)〈a,x〉(−1)〈b,x〉] = E[(−1)〈a+b,x〉]. If a 6= b, then a+ b 6= 0 and
(−1)〈a+b,x〉 is 1 for half the values of x and 0 for the other half, which implies that E[(−1)〈a+b,x〉] = 0.
If a = b, then a+ b = 0 and E[(−1)〈a+b,x〉] = 1.

This shows that the functions χa form an orthonormal set and therefore a linearly independent
set. To see that they form a basis, note that there are 2n of them and the dimension of the vector
space of all functions f : {0, 1}n → R is 2n. �
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As a consequence of Proposition 1, we can write any function f : {0, 1}n → R as (2), where the
Fourier coefficients are given by

f̂(a) = Ex∈u{0,1}n
[
f(x) · χa(x)

]
= Ex∈u{0,1}n

[
f(x) · (−1)〈a,x〉

]
,

and Parseval’s equality tells us that

Ex∈u{0,1}n
[
f(x)2

]
=

∑
a∈{0,1}n

f̂(a)2 .

For a Boolean function g : {0, 1}n → {0, 1}, we typically consider the Fourier expansion of the
rescaled variant f : {0, 1}n → {−1, 1} given by f(x) = (−1)g(x). In that case, the Fourier coefficient

f̂(a) = Pr
x∈u{0,1}n

[
g(x) = 〈a, x〉

]
− Pr
x∈u{0,1}n

[
g(x) 6= 〈a, x〉

]
(3)

gives the correlation of g(x) with the parity function with mask a, and Parseval’s equality reads∑
a∈{0,1}n

f̂(a)2 = 1 . (4)

This means that we can interpret f̂2 as a probability distribution over {0, 1}n.

2 List Decoding the Hadamard Code

We now present a simple application that illustrates the power of harmonic analysis for Boolean
functions. Recall the list decoding problem for the Hadamard code: Given η > 0 and a received
word g modeled as a function g : {0, 1}k → {0, 1}, we want to find the set S of all messages
a ∈ {0, 1}k whose codewords have a given degree of agreement with g. That is, S is the set of all
a that satisfy

Pr
x∈u{0,1}n

[
g(x) = 〈a, x〉

]
≥ 1

2
+ η . (5)

In Lecture 5, we developed a randomized algorithm for this problem, and as a byproduct of the
analysis we concluded in Corollary 7 that the number |S| of solutions a is O(k/η2). We now show
how to improve this upper bound to one that is independent of k, namely |S| ≤ 1

4η2
.

For this, consider f(x) = (−1)g(x). By (3), the requirement (5) is equivalent to f̂(a) ≥ 2η. By
Parseval’s equality (4),

|S| · (2η)2 ≤
∑
a∈S

f̂(a)2 ≤
∑

a∈{0,1}n
f̂(a)2 = 1,

which implies that |S| ≤ 1
4η2

.

3 Almost k-Wise Uniformity

We now use harmonic analysis to quantitatively show that every small-bias distribution is “almost”
k-wise uniform. Recall that for a distribution D on {0, 1}r and a ∈ {0, 1}r, we defined

biasa(D)
.
= E

[
(−1)〈a,D〉

]
= Pr

[
〈a,D〉 = 0

]
− Pr

[
〈a,D〉 = 1

]
,
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and D is β-biased if
∣∣biasa(D)

∣∣ ≤ β holds for every nonzero a. In the previous lecture, we showed
that D is β-biased if and only if D is ε-pseudorandom for polynomials of degree 1 with ε = β/2.
We also argued that, if a distribution D on {0, 1}r is ε-pseudorandom for polynomials of degree k,
then for every subset I ⊆ [r] with |I| = k,

(i) (∀y ∈ {0, 1}k)
∣∣∣Pr[D|I = y]− Pr[Uk = y]

∣∣∣ ≤ ε , and

(ii) dstat(D|I , Uk) ≤ 2kε.

We now show the following strengthening.

Proposition 2. Let D be a distribution on {0, 1}r such that |biasa(D)| ≤ β for every nonzero
a ∈ {0, 1}r of weight at most k. Then for every I ⊆ [r] with |I| = k, we have

(i) (∀y ∈ {0, 1}k)
∣∣∣Pr[D|I = y]− Pr[Uk = y]

∣∣∣ ≤ (1− 1
2k

)
· β , and

(ii) dstat(D|I , Uk) ≤
√

2k − 1 · β2 .

Note that Proposition 2 strengthens the statements from last lecture in several ways. It shows
that requiring ε-pseudorandomness for polynomials of degree k is an overkill; degree 1 suffices.
Moreover, it quantitatively improves the bound for (ii).

Proof (of Proposition 2). Let f : {0, 1}k → [0, 1] be defined by f(y) = Pr[D|I = y], and consider
the Fourier expansion f =

∑
b∈{0,1}k f̂(b) · χb. We have that

f̂(b) = Ey∈u{0,1}k [f(y)(−1)〈b,y〉]

=
1

2k
·
∑

y∈{0,1}k
f(y)(−1)〈b,y〉

=
1

2k
· E
[
(−1)〈b,D|I〉

]
=

biasb(D|I)
2k

=
biasa(D)

2k
,

where a ∈ {0, 1}r is such that a|I = b and a|I = 0. Observe that a has weight at most k, and

that a 6= 0 if and only if b 6= 0. Therefore, we can conclude that f̂(0) = bias0(D)
2k

= 1
2k

, and by our

hypothesis that |f̂(b)| ≤ β/2k for every b 6= 0. By considering the uniform distribution D = 1
2k

,

the above derivation also shows that 1̂
2k

(b) equals 1
2k

for b = 0, and vanishes for every nonzero b.
Thus, we also have that ∣∣∣∣∣ ̂(

f − 1

2k

)
(b)

∣∣∣∣∣
{

= 0 if b = 0,

≤ β
2k

if b 6= 0.
(6)
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For any y ∈ {0, 1}k, we have that∣∣∣Pr[D|I = y]− Pr[Uk = y]
∣∣∣ =

∣∣∣∣f(y)− 1

2k

∣∣∣∣
=

∣∣∣∣∣∣
∑

06=b∈{0,1}k
f̂(b)χb(y)

∣∣∣∣∣∣
≤

∑
06=b∈{0,1}k

|f̂(b)χb(y)|

=
∑

06=b∈{0,1}k
|f̂(b)|

≤ (2k − 1) · β
2k

= (1− 1

2k
) · β,

which establishes part (i). For part (ii) we have that

dstat(D|I , Uk) =
1

2

∑
y∈{0,1}k

|f(y)− 1

2k
|

= 2k−1 · Ey∈u{0,1}k [|f(y)− 1

2k
|]

≤ 2k−1 ·
√

Ey∈u{0,1}k [(f(y)− 1

2k
)2] (by Cauchy–Schwarz)

= 2k−1 ·
√

(f − 1

2k
, f − 1

2k
) (by the definition of the inner product)

= 2k−1 ·

√√√√ ∑
b∈{0,1}k

(
̂
f − 1

2k
(b))2 (by Parseval’s equality)

≤ 2k−1 ·

√√√√ ∑
0 6=b∈{0,1}k

(
β

2k
)2 (by (6))

=
√

2k − 1 · β
2
. �

We quantify the notion of “almost” k-wise uniformity as follows.

Definition 2 (Almost k-wise uniformity). A distribution D on {0, 1}r is ε-pseudorandom for
k-wise uniformity if, for every I ⊆ [r] with |I| = k, we have dstat(D|I , Uk) ≤ ε.

Recall that Theorem 4 from Lecture 6 gives an efficient β-bias generator with seed lengthO(log(r/β)).
Applying part (ii) of Proposition 2 to this construction yields the following result.

Theorem 3. For all integers r and k ∈ [r], and every real ε > 0, there exists an efficiently
computable ε-pseudorandom generator G : {0, 1}` → {0, 1}r for k-wise uniformity with ` = O(k +
log(1/ε) + log(r)).
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Note that the k term in the seed length of Theorem 3 is additive, as opposed to the seed length
O(k · log(r)) in our construction of perfectly k-wise uniform generators from Lecture 4. In the next
lecture, we will see how we can again use small-bias generators to further reduce the seed length
of ε-PRGs for k-wise uniformity from O(k + log(1/ε) + log(r)) in Theorem 3 to O(k + log(1/ε) +
log log(r)).
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