
CS 880: Pseudorandomness and Derandomization 2/18/2013

Lecture 8: Applications of Small-Bias Generators

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Gautam Prakriya

In the previous lecture, we developed the basics of harmonic analysis and used them to quan-
titatively show that every small-bias generator is almost k-wise uniform. This led to an ε-PRG for
k-wise uniformity with seed length O(k + log(1/ε) + log r), where r denotes the output length. In
this lecture we give a construction that improves the dependence on r to O(log log r), and for this
we again use small-bias generators. In general, it is a good idea to consider small-bias generators
whenever harmonic analysis is involved in the correctness of the construction. This is because of the
close connection between the Fourier coefficients of a distribution and its bias that we mentioned
in the last lecture.

We also present two other applications of small-bias generators, namely in the context of ap-
proximation algorithms: a hardness result and a (derandomized) algorithm for the maximum sat-
isfiability problem of a set of quadratic equations over F2.

1 Almost k-Wise Uniform Generators

In this section, we develop an alternate way to construct an almost k-wise uniform generator.
Theorem 5 from Lecture 4 gives a construction of a perfect k-wise uniform generator G : {0, 1}` →
{0, 1}r with seed length ` = O(k · log r). We can try to further reduce the need for truly random
bits by derandomizing G, i.e., by using another PRG G′ to generate the seed of length ` for G.

What second PRG G′ should we use? The answer depends on (i) what properties of the final
pseudorandom distribution D matter, and (ii) how G uses its seed. As for (i), by the analysis of
last lecture, we know that it is sufficient for D to have small bias in order to get a distribution
that is almost k-wise uniform. As for (ii), the PRG G in Theorem 5 of Lecture 4 (which is based
on the one in Lemma 4 of that lecture) is a linear mapping, and in that case the following lemma
shows a simple connection between the biases of D = G(D′) and the biases of D′. Facts (i) and (ii)
combined then suggest the use of a small-bias generator G′ to generate D′.

Proposition 1. Let D′ be a distribution on {0, 1}` and let D
.
= M ·D′, where M ∈ {0, 1}r×`. For

every a ∈ {0, 1}r, we have
biasa(D) = biasMT ·a(D

′) .

Proof. We have

biasa(D) = E
[
(−1)〈a,D〉

]
= E

[
(−1)〈a,M ·D

′〉
]

= E
[
(−1)〈M

T ·a,D′〉
]

= biasMT ·a(D
′) ,

where the third equality follows because

〈a,MD′〉 = aT (MD′) = (aTM)D′ = (MTa)TD′ = 〈MTa,D′〉. �

Proposition 1 shows that, if D′ has small bias, then all the biases of D = M ·D′ are equally small,
except with respect to those a for which MTa = 0 (for which it is 1). In case the linear mapping M

1

defines a k-wise uniform generator, we argued in Lecture 4 (cf. the proof of Proposition 3) that
every k rows of M are linearly independent, or equivalently, every k columns of MT are linearly
independent. Thus, the only vector a ∈ {0, 1}r with at most k nonzero entries that satisfies
MTa = 0 is the zero vector. In combination with Proposition 2 from Lecture 7, this means that D
is close to being k-wise uniform in the following quantitative sense.

Proposition 2. Let D′ be a β-bias distribution on {0, 1}`, and let G : {0, 1}` → {0, 1}r be a linear
k-wise uniform generator. Then D

.
= G(D′) has the following properties for every I ⊆ [r] with

|I| = k:

(i) (∀y ∈ {0, 1}k)
∣∣∣Pr[D|I = y]− Pr[Uk = y]

∣∣∣ ≤ (1− 1
2k

)
· β , and

(ii) dstat(D|I , Uk) ≤
√

2k − 1 · β2 .

Recall that Theorem 4 from Lecture 6 yields a generator G′ with seed length O(log(`/β)) that
produces a β-bias distribution D′ on {0, 1}`. The construction of Theorem 5 from Lecture 4 gives
us a linear k-wise uniform generator on {0, 1}r with seed length ` = O(k · log r). Combining those
two constructions as in Proposition 2 with β = ε/

√
2k − 1 yields the following result.

Theorem 3. For all integers r and k ∈ [r], and every real ε > 0, there exists an efficiently
computable ε-pseudorandom generator G : {0, 1}` → {0, 1}r for k-wise uniformity with ` = O(k +
log(1/ε) + log log r).

In many settings where k-wise uniformity is sufficient, almost k-wise uniformity is also sufficient.
This allows us to reduce the seed length from O(k · log r) down to O(k + log(1/ε) + log log r),
where ε denotes the allowed statistical distance from k-wise uniform. Note that this improves over
the seed length O(k + log(1/ε) + log r) from last lecture. For an example of an application where
the reduction from log(r) down to log log(r) matters, we refer to [MNS95, Section 8].

Finally, let us point out that, in some settings, having perfect rather than almost k-wise unifor-
mity is critical. An example is the additivity of the variance given by Proposition 3 of Lecture 5
and the applications that depend on it. The variance of the sum of t samples of a random variable
grows only linearly with t when the samples are pairwise independent, but quadratically when the
samples are merely almost pairwise independent. This is because the O(t2) cross terms in the proof
of Proposition 3 no longer vanish.

2 Hardness of Approximation

In this section we study the problem of finding approximate solutions to a system of quadratic
equations over F2 in the following sense: Given a list S of m polynomials Qi of degree at most
two in n variables over F2, our goal is to find an assignment x ∈ {0, 1}n that satisfies many of the
equations Qi(x) = 0. The best we could hope for is to find a solution that satisfies a fraction

Max-QE(S)
.
=

1

m
max

x∈{0,1}n

m∑
i=1

I[Qi(x) = 0]

of the equations. Finding a solution that realizes Max-QE(S) is NP-hard. In fact, it is even
NP-hard to decide whether Max-QE(S) = 1 holds.

2

Proposition 4. Given a system S of quadratic equations over F2, deciding whether there exists an
assignment to the variables that satisfies all the equations is NP-hard.

Proof. To show that the problem is NP-hard, we reduce 3-SAT to it based on the following
observation. Every clause in a 3-CNF formula ϕ can represented by a polynomial of degree 3 over
F2, which in turn can be represented by a pair of polynomials of degree 2 with the introduction of
a new variable. For instance, consider the clause (x1 ∨ x2 ∨ x3). An assignment satisfies this clause
if and only if it satisfies (1−x1) ·x2 · (1−x3) = 0. This equation is equivalent to the system of two
quadratic equations {

(x2 − y1,2)(1− x3) = 0
y1,2 − x1x2 = 0,

where y1,2 is an auxiliary variable. By collecting these equations for all clauses of ϕ, we obtain a
system S of quadratic equations that is satisfiable if and only if ϕ is satisfiable. The transformation
from ϕ into S only takes polynomial time. �

Given Proposition 4, we relax our goal to finding an assignment that satisfies at least a fraction
α · Max-QE(S) of the equations for some constant α > 0. We will use small-bias generators to
investigate (1) for which α the relaxed goal remains NP-hard, and (2) for which α we can realize
the goal in polynomial time. Results of type (1) are called inapproximability results, and results of
type (2) α-approximation algorithms.

2.1 Inapproximability

We show that finding an assignment that satisfies a fraction α · Max-QE(S) of the equations is
NP-hard for every constant α > 1

2 . In fact, we prove a somewhat stronger statement.

Theorem 5. For every α
.
= 1

2 + ε where ε is a positive real, it is NP-hard to distinguish between
the cases Max-QE(S′) = 1 and Max-QE(S′) < α, where S′ is the input, a list of polynomials of
degree at most two over F2.

Proof. Given Proposition 4, it suffices to construct a polynomial-time transformation f that takes
a system S of quadratic equations and produces a system S′ = f(S) of quadratic equations with
the following properties:

◦ Completeness: Max-QE(S) = 1 implies Max-QE(S′) = 1.

◦ Soundness: Max-QE(S) < 1 implies Max-QE(S′) < α.

Here is how we construct S′. Let the system S consist of the equations Qi = 0 for i ∈ [m], where Qi
denotes a polynomial of degree at most 2 in n variables over F2. Fix an assignment x ∈ {0, 1}n,
and define

Ii
.
= I[Qi(x) 6= 0]

to be the indicator that the ith equation is not satisfied. Note that x satisfies all the equations of S
if and only if I

.
= (I1, · · · , Im) = 0.

3

Consider the linear combination
∑
ciQi for some c ∈ {0, 1}m. Since we are working over F2, a

sum of equations is satisfied by x if and only if the number of equations that are not satisfied by x
is even. In terms of the above linear combination, we have that

m∑
i=1

ciQi(x) = 0 ⇐⇒
m∑
i=1

ciIi = 0 ⇐⇒ 〈c, I〉 = 0,

where all the arithmetic is over F2. Therefore, for a uniform linear combination we have

Pr
c←Um

[

m∑
i=1

ciQi(x) = 0] = Pr
c←Um

[〈c, I〉 = 0] =

{
1 if I = 0
1
2 otherwise.

If we defined S′ to consist of all equations of the form
∑m

i=1 ciQi(x) = 0 for all possible c ∈ {0, 1}m,
we would be close to our goal; the only issue is that S′ is too large to be constructed in polynomial
time. To make the size of S′ polynomial in m, we let c range over the image of a small-bias
generator, i.e., over G(U`) where G : {0, 1}` → {0, 1}m is a β-bias generator. By the definition of
bias and the connection with PRGs for polynomials of degree 1, for Dm

.
= G(U`), we have that

Pr
c←Dm

[
m∑
i=1

ciQi(x) = 0] = Pr
c←Dm

[〈c, I〉 = 0]

{
= 1 if I = 0

≤ 1
2 + β

2 otherwise.

If we set β < 2ε, we meet the completeness and soundness conditions of the transformation.
Moreover, if we use the small-bias generator from Theorem 4 of Lecture 6, the number of equations
in S′ is 2` = O((mε)2), which is is polynomial, and we can construct each individual equation in
polynomial time. Thus, we have realized the transformation f we needed. This completes the
proof. �

Theorem 5 immediately yields the following corollary about the hardness of approximating the
value Max-QE(S).

Corollary 6. For every α
.
= 1

2 + ε where ε is a positive real, the following problem is NP-hard:
Given a list S′ of polynomials of degree at most 2 over F2, find a value v such that

α ·Max-QE(S′) ≤ v ≤ Max-QE(S′).

Proof. Given an approximation algorithm as in the statement of the corollary, we can distinguish
between the two cases of systems S′ in Theorem 5 as follows: Run the approximation algorithm
on S′ and check whether the value v it outputs is at least α. If so, we are in the first case, and
otherwise in the second case. �

Corollary 6 implies that it is NP-hard to find an assignment for the variables of a given system S
of quadratic equations that satisfies a fraction at least α ·Max-QE(S) of the equations for any α
of the form α = 1

2 + ε where ε is a positive constant.
In fact, the proofs show that we can pick ε to be a decreasing function of the input size – as

long as 1/ε is polynomially bounded, the proofs of Theorem 5 and Corollary 5 carry through.
One can do substantially better using a considerably more involved approach based on harmonic

analysis. That approach shows that α in Theorem 5 can be chosen as α = 3
8 + ε, where 1/ε is

polynomially bounded [H̊as11]. The same improvement to Corollary 6 follows.

4

Corollary 6 can be further improved by considering as the first case in Theorem 5 systems S
that are highly satisfiable but not necessarily fully satisfiable. The approach based on harmonic
analysis then shows that α in Corollary 6 can be chosen as α = 1

4 + ε, where 1/ε is polynomially
bounded [H̊as01]. The latter result is tight in the sense that α = 1

4 can be realized in polynomial
time, as we will see next.

2.2 Approximation algorithms

In order to construct a good approximation algorithm, we first analyze how well a random as-
signment fares, and then show how to deterministically find an assignment that does at least as
well.

Let us first focus on a single equation Q = 0, where Q is a polynomial of degree at most 2
in n variables over F2. What is the minimum probability that a uniform assignment x ∈u {0, 1}n
satisfies Q(x) = 0?

Well, if Q ≡ 1, then the probability is zero. Such unsatisfiable equations can be recognized in
deterministic polynomial time, even when they are given in the form of an arithmetic formula or
circuit. Recognizing such Q is equivalent to the polynomial identity testing problem from Lecture 1.
In general, the only efficient algorithms for this problem are randomized. However, for degree two
there is a simple randomized algorithm: Evaluate the formula or circuit symbolically, keeping track
of the list of all monomials, and check whether at the end only the constant monomial is present.
Since there are only O(n2) monomials of degree at most 2, this can be done in deterministic
polynomial time.

How low can the probability be for a satisfiable equation? For Q(x) = x1x2− 1, the probability
that a uniform assignment satisfies Q = 0 equals 1

4 . We leave it as an exercise to argue that this is
as low as that probability gets.

Exercise 1. Prove that a uniform assignment to the variables of a satisfiable quadratic equation
over F2 is satisfying with probability at least 1

4 .

Suppose S contains m equations that are individually satisfiable. By linearity of expectation,
the expected number of equations that a uniform assignment satisfies is at least m

4 . This implies
the existence of an assignment x that satisfies at least that many equations. Since no assignment
can satisfy any of the other equations, that assignment satisfies at least a fraction 1

4Max-QE(S) of
the equations. What remains to show is to find such an assignment x in deterministic polynomial
time.

Suppose that we generate the assignment x using an ε-PRG G for polynomials of degree 2. For
each of the m individually satisfiable equations Q = 0, the probability that x satisfies it is at least
1
4 − ε. Thus, the expected number of satisfied equations among those m is at least (14 − ε)m, and
therefore there exists at least one x in the image of G that satisfies d(14 − ε)me of the equations.
Now, if ε is sufficiently small, the latter quantity is at least m

4 . We leave it as an exercise to show
that ε < 1

4m suffices to guarantee that property.

Exercise 2. Prove that if ε < 1
4m then d(14 − ε)me ≥

m
4 .

Corollary 4 from Lecture 6 gives us an efficiently computable ε-PRG G for degree 2 polynomials
with seed length ` = O(log(m/ε)). For ε = 1

5m , we can cycle over all assignments x in the range of
G in time polynomial in m. Trying out all those assignments and selecting the one that satisfies
the most equations yields the following result.

5

Theorem 7. There exists a deterministic polynomial-time algorithm that takes a list S of polyno-
mials Q of degree at most 2 over F2 and outputs an assignment that satisfies at least 1

4 ·Max-QE(S)
of the equations Q = 0.

Theorem 7 shows the optimality of the strengthening of Corollary 6 we mentioned, in which 1
2 is

replaced by 1
4 .

In the case where the system S is fully satisfiable, it turns out that one can efficiently reduce to
a fully satisfiable system S′ in which every equation is individually satisfiable with probability at
least 3

8 [H̊as11]. The same approach as above then yields a deterministic polynomial-time algorithm
to find an assignment that satisfies a fraction at least 3

8 of the equations. This shows the optimality
of the strengthening of Theorem 5 we mentioned, in which 1

2 is replaced by 3
8 .

References

[H̊as01] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–
859, 2001.

[H̊as11] Johan H̊astad. Satisfying degree-d equations over GF[2]n. In Proceedings of the 14th Inter-
national Workshop on Approximation, Randomization, and Combinatorial Optimization,
APPROX-RANDOM 2001, pages 242–253, 2011.

[MNS95] Alain Mayer, Moni Naor, and Larry Stockmeryer. Local computations on static and dy-
namic graphs. In Proceedings of the Third Israel Symposium on the Theory of Computing
and Systems, pages 268–278. IEEE, 1995.

6

	Almost k-Wise Uniform Generators
	Hardness of Approximation
	Inapproximability
	Approximation algorithms

