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DRAFT

In this lecture, we introduce a new graph operation, the derandomized squaring, which affects
the second-largest eigenvalue of a graph in a similar way as squaring and which is based on the
replacement product. The advantage that derandomized squaring has over squaring is that the
degree does not go up by too much. We can use this tool to show that the problem of Undirected
Connectivity in deterministic Logspace.

As explained in the last lecture, we consider edge-colored graphs and we represent them formally
as a neighbor function ΓG : V (G) × [D] → V (G). To describe the neighbor v = ΓG(u, `) that we
reach from u if we follow the edge {u, v} that has color ` under the coloring c. In this lecture, we
will not require that the induced edge-coloring is proper or that the graph is undirected. Instead,
we will consider “consistently labeled” graphs G, which are D-regular directed graphs with edge
colors from [D] such that any two outgoing edges have distinct colors and any two incoming edges
have distinct colors at every vertex. We make this formal in the following definition.

Definition 1. The edge-colored directed graph G represented by the neighbor function

ΓG : V (G)× [D]→ V (G)

is called consistently labeled if, for all u, u′ ∈ V (G) with u 6= u′ and all `, `′ ∈ [D] with ΓG(u, `) =
ΓG(u′, `′), we have ` 6= `′.

1 Replacement Product

We defined the replacement productG r H in the previous lecture for aD-regularN -vertex graphG
and a d-regular D-vertex graph H: For every vertex u of G, we create a distinguished copy of H
in G r H. This copy is the “cloud” of v in G r H. Each vertex in the cloud has a label from
the set V (H) = [D]. Within a cloud, adjacencies correspond to adjacencies in H. Across clouds,
adjacencies exist as they do in G; if we are at node (u, `) in G r H, then we have d edges to the
vertex (ΓG(u; `), `). and for each edge we choose the vertices within the clouds that correspond to
its edge label.

Transition Matrices in the Replacement Product. We recall a number of transition matrices
related to the replacement product G r H that will be convenient in defining and analyzing the
derandomized squaring:

1. A is the transition matrix of G

2. B is the transition matrix of H
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3. Â is the transition matrix corresponding to edges between the clouds of G r H, that is, we
have Â(v,`),(u,`) = 1 if ΓG(u, `) = v and Â(v,`′),(u,`) = 0, otherwise.

4. B̂ = IN ⊗ B is the transition matrix for walking within any cloud of G r H, that is,
B̂(u,`′),(u,`) = B`′,` and B̂(v,`′),(u,`) = 0 for all distinct u, v ∈ V (G).

The transition matrix of the replacement product can be written as M = 1
2B̂ + 1

2Â.

2 Derandomized Squaring

Derandomized Squaring [RV05] is related to a certain random walk in the Replacement Product.
To compute the derandomized square of a given D-regular directed graph G, we will thus again
make use of a fixed constant-size expander H. In our construction, the number of vertices of H
has to be equal to the degree D of G.

Conceptually, we generate the derandomized square G s H of G and H by “lifting” G onto
G r H, taking two steps between clouds, and then projecting back onto G. Since each step between
clouds (a transition with respect to Â) is deterministic, we make sure we are located at any vertex in
each cloud with uniform probability. We achieve this before the first across-cloud step by doing the
lifting in such a way that we select a vertex in the corresponding cloud uniformly at random among
the vertices in the cloud. We achieve randomness before the second across-cloud step by taking a
step within the cloud, that is, according to B̂. We exploit the fact that H is a good expander, so
a single step in B̂ should give us a reasonable approximation of a uniform distribution. Thus, the
transition matrix M(G s H) of the derandomized square is defined as

M(G s H) = PÂB̂ÂL .

Here L is the lifting operation and P is the corresponding projection. That is, L is the ND × N
matrix and P is the N ×ND matrix that satisfies(

Lx
)
(u,`)

= xu/D ,(
Pz
)
u

=
∑
`

z(u,`) ,

for all N -dimensional vectors x, all ND-dimensional vectors z, and all u ∈ V (G) and ` ∈ V (H).
To understand this definition (cf. also Figure 2), recall that basic squaring generates the

graph G2 of degree D2, and it connects vertices that can be reached in two steps. The degree
of a graph is closely related to the amount of randomness needed to perform a random walk on it,
and we therefore want it to be small. In the definition of G s H, we only have two steps where
randomness is needed — the two Â-steps and the projection step P are purely deterministic and
do not contribute to the degree of G s H. The steps that do require randomness are L and B̂. The
lifting L selects one of D vertices in a cloud uniformly at random, and the B̂ steps select one of d
neighbors uniformly at random. Thus, the degree of G s H is D · d as opposed to the degree D ·D
of G2.

The transition matrix above suffices to do the eigenvalue analysis, but formally, we also need
to specify the edge labels of the graph G s H.
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Figure 1: A pictorial representation of the five-step walk that makes up a single step in the
derandomized square graph. The left side of the picture corresponds to the vertices of G and thus
the vertices of G s H. The right side of the picture corresponds to the graph G r H; it is not
actually part of the graph G s H, but any edge in G s H can be though of as a five-step walk in
the graph G ∪̇ (G r H): Starting at the top left vertex v, we first “lift” to G r H by selecting
uniformly at random a vertex in the cloud Hv of v in G r H. Next we take the deterministic
step Â, which corresponds to switching the cloud, i.e., it is a step in G. Then we take a uniform
step inside the second cloud, which corresponds to B̂. We take another deterministic step Â and
arrive somewhere in a third cloud. Finally, we “project” back to the vertex of G whose cloud we
just arrived at.
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Definition 2. The derandomized square of a degree-D graph G with respect to a degree-d graph H
with vertex set V (H) = [D] is the graph G s H whose vertex set is V (G), whose degree is D · d,
and whose edges are defined by the neighbor function

ΓG s H : V (G)× ([D]× [d])→ V (G)

ΓG s H

(
u; (`, a)

)
= v, where

(v, ∗) .
= ΓG r H

(
ΓG r H((u, `); d+ 1); a

)
.

In particular, if H is the complete graph, then G s H is equal to G2. We now prove more generally
that, if H is a good expander, then the second-largest eigenvalue of G s H is close to the one of G2.

Lemma 1. If G has second-largest eigenvalue λ and H has second-largest eigenvalue µ, then G s H
has second-largest eigenvalue at most (1− µ)λ2 + µ.

Proof. The transition matrix of G s H is M(G s H) = PÂB̂ÂL as discussed above. By the matrix-
decomposition view of second-largest eigenvalues, we can write B̂ = IN ⊗B = (1− µ) · IN ⊗ JD +
µ · IN ⊗E for some error matrix E with ‖E‖2 ≤ 1. We define J̃ = IN ⊗ JD and Ẽ = IN ⊗E. Then
‖Ẽ‖2 ≤ 1 holds by the properties of the tensor product. The transition matrix M = PÂB̂ÂL can
then be decomposed into

M = (1− µ) · PÂJ̃ÂL+ µ · PÂẼÂL . (1)

Note that J̃ corresponds to moving to uniformly at random vertex in the same cloud and the
matrix product LP does the exact same thing, we have J̃ = LP . Furthermore, note that PÂL first
moves to a uniform vertex in the cloud, crosses to a neighboring cloud deterministically, and then
collapses the clouds to a single vertex. This is the same operation as one step in A, so we have
A = PÂL. Then the first matrix product in (1) becomes PÂLPÂL = (PÂL)2 = A2 = M(G)2.
Then we can use the triangle inequality to bound λ(M) ≤ (1 − µ)λ(A2) + µλ(PÂẼÂL). Since
λ(A2) = λ2 and λ(PÂẼÂL) ≤ ‖PÂẼÂL‖2 ≤ ‖P‖2 · ‖Â‖2 · ‖Ẽ‖2 · ‖Â‖2 · ‖L‖2 =

√
D · 1 · 1√

D
, we

obtain the claimed inequality. �

In the next lecture, we will use the derandomized squaring operation to obtain a log-space
algorithm for undirected connectivity.
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