CS 880: Pseudorandomness and Derandomization 3/11/2013
Lecture 14: Pseudorandom Generators for Logarithmic Space

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Adam Everspaugh

DRAFT

Last time, we discussed derandomized squaring, a graph operation that reduces the second-
largest eigenvalue while increasing the degree only by a constant factor. This lecture uses an
iterative application of derandomized squaring to construct a pseudorandom generator that runs
in logarithmic space and can be used to solve the undirected connectivity problem in logarithmic
space.

1 Undirected Connectivity

Given an undirected graph G and vertices s,t € V(G), the undirected connectivity problem is to
decide whether there is a path from s to ¢ in G. If G has N vertices and M edges, then the existence
of a path between s and ¢t implies the existence of a path of length at most N. If A is the adjacency
matrix of G and G has, without loss of generality, self-loops on every vertex, then s and ¢ are
connected if and only if (AV);s > 0 holds. In other words, the goal of the connectivity problem is
to decide if there is a non-zero probability that, starting at vertex s and after traversing N steps
in G, we will arrive at vertex t.

1.1 Algorithms for undirected connectivity

Classical solutions to the connectivity problem include breadth- and depth-first search, both of
which use a relatively large amount of space in their algorithms. We first discuss a few simple
algorithms for undirected connectivity before we dive into the logarithmic space algorithm.

Matrix multiplication. As already indicated above, raising the adjacency matrix A to the
power N corresponds to walking N steps in the graph. Therefore, perhaps the simplest way to
compute the number of N-step walks is to iteratively multiply by A:

A—3 AA=A%2 s A2A =43 — — AN

If the algorithm is allowed to use polynomial space, it runs in time O(N - N¥), where O(N*) is the
time it takes to multiply two N x N matrices. The algorithm for computing an entry (AY); s can
also be implemented in space O(N log V) since there are N iterations, and in each iteration we need
to keep track of O(log N) bits of information when computing the inner products in the matrix
multiplication. In the latter implementation, the running time blows up to exp(O(N log N)) since
we have to recompute previously computed results in order to save space. The first implementation
above can be thought of as following the dynamic programming paradigm since the intermediate
matrices are stored in memory in order to save time.

Repeated Squaring. As is the case with computing the power of integers, we can speed up the
above naive algorithm for computing the power of a matrix by repeated squaring.

A— A — (AP =A" — . — (A% eV =AY

Here we assume for simplicity that N is a power of 2 so that log N is an integer. This algorithm
requires log N iterations, and if we have polynomial space, it runs in time O(log N - N¥). It can
also optimized for low space usage: in each iteration we need to keep track of only O(log N) bits,
so the total space requirement is O(log2 N). The running time of the latter implementation is
exp(O(log? N)).

Random walk. If we have access to randomness, then there is a simple algorithm to solve
the connectivity problem: Take a random walk of length ¢ = 2* in G for some integer k. This
algorithm uses only O(log N) space since this is the number of bits required to store the vertex
you are currently at and compare it to t. The amount of randomness required is quite large: If we
are currently located at a vertex v of degree D, then we need log D bits to decide which neighbor
to walk to. Without loss of generality, we can assume G to be D-regular. In this case, we need
£ -log D bits to perform an f-step random walk.

We will see below that the random walk started at s and stopped after a polynomial number of
steps will output a vertex that is close to uniformly distributed. So let us first see what happens if
we were able to take a uniform sample from the unique connected component C(s) C V(G) that
contains s: If v is uniformly distributed on C(s), and s and ¢ are not connected, then the probability
that v = t is equal to zero. Otherwise, the probability is equal to 1/|C(s)| > 1/N. Thus, uniformly
sampling v from C(s) and checking whether v = ¢ gives rise to a randomized algorithm with one-
sided error, and we can boost our confidence by repeating the process a polynomial number of
times. In particular, by repeating the process O(log(NN/e)) times, we can reduce our one-sided
error to at most e.

The next step in the argument is to show that taking a random walk starting at s and selecting
the vertex v after O(N?log N) random steps is very close to the uniform distribution on C(s). For
this, we use the fact that every connected D-regular directed graph G with loops on all vertices
has a second-largest eigenvalue that is polynomially bounded away from 1:

Lemma 1. Let G be a connected D-reqular directed graph with loops on all vertices.

After £ steps, we see that A(GY) = AG)! < (1 — m)e < exp(—//(2D?N?)). Thus for { =
O(D?N?log N) steps, we have A\(G*) < 2]\/% In this situation, we can apply the following lemma,
where M is the transition matrix of G.

Lemma 2. Let M be a random walk matriz of a graph with N vertices.

IfA(M) < 5575, then (M)y; > § — 3z

This second lemma is useful because it guarantees that a uniformly random neighbor of s in the
graph G* is ﬁ—close to uniformly on C(s). In particular, every vertex in C(s) will be reached with
positive probability. In order to derandomize the random walk algorithm, we can therefore cycle
through all edges incident to s in G¢ and check whether they lead to t. £ = 2%, this approach turns
out to be equivalent to the repeated squaring idea from above. The repeated squaring brings down
the second-largest eigenvalue to an inverse polynomial value in the number of vertices, but it comes
at the cost of the degree, which gets squared every time.

2 Derandomized power graph

In Definition 2 of Lecture 13, we introduced the derandomized squaring operation: it approximates
the effect that squaring has on the second-largest eigenvalue, but it increased the degree only
by a constant factor instead of squaring it. We will now iteratively apply this operation, and
then perform a random step in the so-obtained derandomized power graph. Intuitively, since this
graph approximates a true power graph G¢, a single random step in the derandomized power will
approximate an /-step random walk in G.

For simplicity, we define the derandomized power graph only for exponents ¢ = 2¢ that are
powers of two. Furthermore, we assume that G is D-regular for some D. The 2'-th derandomized
power of G is denoted as G¥2' and defined inductively as follows:

=@
G = ®H =GEH
G =¥ ©Hy = (GO H1)® Ho

2i+1

G =@ ®Hip

For each i, the graph H; is some regular directed graph, and we denote its degree by d;. The
sequence Hi, Hs, ... is a family of expanders that may depend on G in a limited way. In our case,
it will depend only on the number of vertices of G and the degree D. For the definition to be
well-defined, we need the number of vertices of H;11 to coincide with the degree of the graph G~
It is easy to see inductively that G¥?" has degree D - H;Zl d;.

2.1 Random steps in the derandomized power graph

We mentioned above that the derandomized power graph G*2" that approximates the graph G2
with respect to the second-largest eigenvalue if the H;’s are good expanders. For technical reasons,
we have to use a different family of expanders for different values of N. The following lemma
captures the eigenvalue properties of the derandomized power graph that we will need to apply
Lemma 2.

Lemma 3. For all positive integers D and N, there is a fully explicit family of graphs Hy, Hs, . ..
and a number k = O(log D 4 log N) such that:

(i) for all D-regular N -vertex graphs G, we have that)\(Gzzk) < 2]\}1'5, and

(ii) we have log([Tr_, di) = S8 log d; < O(k).

Proof. The construction is in two phases. The first ¥’ graphs in the sequence will have the same
constant degree and a small, but constant, second-largest eigenvalue. This will bring down the

second-largest eigenvalue of ka/ to a constant. In the second phase, the degree increases doubly
exponentially, but the phase only lasts for k—k’ iterations, which we will set so that k—k" = O(log k).

More precisely, we define Hy,..., Hy to be d-regular graphs with second-largest eigenvalue at
most 1/100 and so that H; has D - d’ vertices. To prove (i), let A be the second-largest eigenvalue
of G and let \; = A(G™?%") be the eigenvalues of the derandomized power graphs. Initially, we have

Ao = A and, by Lemma 1 of Lecture 13, we have A; < (1 — pu)A\? | +p with g < 1/100. It is an easy
exercise to verify that

L—Xi > (3/2)(1 = Xi—1)

holds as long as p < 1/100 and A;—; > 3/4. Thus, for some &' = O(log =), we have A\ < 3.
By Lemma 1, the second-largest eigenvalue of any directed D-regular connected graph with all
self-loops is at most 1 — 1/(2D?N?); thus, the derandomized power graph G~2 has second-largest
eigenvalue < 3/4 after £’ < O(log D + log N) iterations of the derandomized squaring,. .

For the second phase, we define Hy/; for ¢ > 0 to be a dj/4;-regular graph with dp/4; = 20(2)
and second-largest eigenvalue at most 1/29("). Choosing k = k' + loglog N + O(1), it can be seen
similar to above that Ay < 1/ poly(N) holds, which establishes (i).

For (ii), note that d is constant and thus k" -logd < O(k) is an upper bound for the sum of the
first &’ terms. The remaining k — k" terms in the sum are Zf;lk/ log 202") = O(Ziozgllog N+om) 2%) <
O(log N) < O(k). O

After O(log N) derandomized squaring steps, we reduced the second-largest eigenvalue enough
to be able to apply Lemma 2: we get that performing a single step in G~ gives us a vertex
that is close to uniformly distributed in the connected component of the vertex. The degree of the
derandomized power graph G~2" s O(k) by the above lemma, and the number of bits that we need
to sample to perform this step is only log D + klogd = O(log N) as opposed to 2¥log D = O(N) in
the case of the true power graph G2*. By cycling over all random seeds, this method will eventually
allow us to solve undirected connectivity in logspace. Before we can do this, however, we need to
discuss how we can actually compute neighbors in G“Qk, and for this, we will go back to the formal
definition of the derandomized square that uses the neighbor function.

2.2 Edge labels of the derandomized power graph

Recall that in Definition 2 of Lecture 13, the formal definition of the derandomized squaring G¥2 =
G (8 H1, we needed to use the underlying edge labels as specified implicitly by the neighbor function
Fgr2 : V(G) x (D] x [d]) = V(G). In order to see that we can compute a random step in G2
for k < O(log N) in logarithmic space, we need to understand these edge labels a little bit better.
Let’s start simply by looking at G¥2 = G §) Hy. Recall that its transition matrix is M (G @ Hy) =
Pflf?/lL, where L is the lifting and P is the projection operation for clouds of the replacement
product G@ H. Recall also that we multiply from the right, so L is the first operation and so on.
Thus, every edge (v, w) in G=? corresponds to a sequence of steps in the union of G’ and G @ H;:

1. (L) randomized lifting from a vertex of G to the corresponding cloud in the replacement
product G @ H; (picking a vertex in the cloud can described by a label hg € [D] = V(H})).

(A

N

deterministic step to a new cloud.

w

A)
. (B) randomized step within the cloud (which is described by an edge label h; € [d;] of Hy).
4. (A) deterministic step to a new cloud.
- (P)

P) deterministic projection back onto G.

Note that only steps 1 and 3 are randomized, and thus, these are the only steps for which we
need to specify the edge label that we take in order to uniquely describe a particular walk. If we
call these random choices hg € [D] and hy € [d], then the edge label of (v,w) in G¥* = G® H;
is hoh1. Recall that G®2 is a subgraph of G2, and thus, each edge describes some walk from v to w
in G that has length 2. This 2-step walk in GG can be described by the edges labels of GG, that is,
labels from the set [D] = V(Hp). The lifting step together with the first A-step corresponds to the
first step in this 2-step walk. In particular, the first edge label we have to take in G is hg. Then
the second edge label is determined by the E—step, and so, it is the hq-neighbor of hg in H;. That
is, the second edge label is 'z, (ho; h1). We can depict this relationship as follows:

hohy

/ N\

ho T, (ho; ha)

The edge label hohi of G=2 translates to the sequence of edge labels ho, ', (ho; h1) in G.

In the general case of G¥?' = G=2 ® H;, the lift step needs to choose a vertex in V(H;),
and the B—step needs to choose an edge in H;. The latter can again be described by an edge
label h; € [d]. For the former, note that V(H;) has size exactly Dd’~! since that is the degree
of G®2'"'. Thus, an element of V(H;) is of the form hohy ... h;_1, where hg € [D] = V(H;) and
hi,...,hi—1 € [d]. Moreover, such hq...h;_1 is exactly an edge label of V(G”Qlfl). Thus, the edge
labels of G; are of the form hg ... h;.

Let us look at the case i = 2 and let us consider an edge label hohihs of V(G™*). We can
recursively compute the walk in G that corresponds to this edge label by considering the following
binary tree:

hoh1hs
hohi h’ h’ = I'gr, (hohi; ho)
ho Lw, (ho; ha) h, T, (hy; hY)

The root of the tree contains the “input”, an edge label of G®*. The sequence of labels in
the second layer from left to right is the sequence of edge labels of G=2 that the root corresponds
to. The edge labels at the leaves of the tree determine a walk of length 4 in G. This process of
producing the edge labels of a pseudorandom walk in GG can be seen as a pseudorandom generator.
This view will allow us to easily show that it can be computed in logarithmic space.

2.3 The INW-Generator

We have seen above that the process that maps an edge of the derandomized power G~ to a
2-step walk in G has a highly recursive structure. We now define a pseudorandom generator that
captures this structure, but makes no reference to the derandomized square.

Definition 1 (Impagliazzo—Nisan—Wigderson Generator [INW94]). Let D be a positive in-
teger and let Hi, Ho, ... be a sequence of directed outreqular graphs such that H; has out-degree d;,
vertez set [D] x [di] x -+ x [di—1] and neighbor function Ty, : V(H;) % [d;] — V(H;). Then the
INW-generator is the family of functions Gy : [D] x [dy] x --- x [d;] = [D])* such that

Golho) = ho
Giri(ho. . his1) = Gi<h0 . hi) e (FHM(hO B hi+1)> ,

where hg € [D] and h; € [d;] for all j > 0.

Note that different families of graphs H; give rise to different instantiations of the INW-generator.
If the family is fully explicit, that is, the neighbor function is computable in space that is linear in
its input, then the INW generator has the same property.

Fact 4. Assume that the expander family Hy, Ho, ... is fully explicit. Given j € [2¢] and (ho...h;),
we can compute the j-th position of Gi(ho ... h;), that is, the element (G;(ho...h;)); € [D], using
O(log |hg ... hi|]) = O(log D + 3 ;_, logd;) space.

To see that the fact is true, we view j as a binary string of length i. At each point of the algorithm,
we keep track of a position in that binary string and the current label hg ... h;. If the highest-order
bit of j that we have not read yet is 0, we do not modify the current label except by deleting the
last part h; and we continue the recursion in the left branch. Otherwise, we compute the neighbor
in H;y and continue in the right branch.

The following fact connects the labels generated by the INW-generator with the labels in the
derandomized power graph.

Fact 5. Let hy € [D] and h; € [d;] for j > 0, let G be a consistently labeled directed d-regular graph,
and let Hi, Ho, ... be a family of consistently labeled directed d-regular graphs. The following are
equivalent:

1. There is an edge (v,w) with label hy ... h; in the graph G H1 ®) ... H;.

2. If we start at v and move in G by following the sequence G;(hg...h;) of 2 edge labels of G,
we will end up at w.

In other words, the INW-generator provides us with an equivalent definition of the iterated deran-
domized square graph. The two facts above can be seen as a formalization of the discussion in the
previous section.

2.4 Undirected Connectivity in logspace

We are now in position to describe the logspace-algorithm for undirected connectivity. Recall that
we are given an N-vertex graph G and two vertices s and t. We instantiate the INW-generator
with the strongly explicit expander graph family Hj, Ho,... provided by Lemma 3, and we let
k = O(log D + log N) be the number provided by the same lemma. Then the logspace algorithm
works cycles over all seeds of the INW-generator and, for each of them, performs the walk in G
that starts at s and follows the edge labels given by the output of the generator. The algorithm
accepts if and only if it ever visits ¢. Figure 1 contains the formal description of the algorithm.

Input: N-vertex D-regular graph G vertices s,t € V(G)
Decide: Is there a path from s to ¢ in G?

o Let Hy, Ho,...,H be the sequence of strongly explicit expanders provided by Lemma 3,
where k = O(log D + log N) is the number provided by the same lemma.

o Instantiate the INW-generator GG with the expander graphs Hy, ..., H.
o Cycle over all (hg...hy) € [D] X [di] X -+ X [dg].

— Set the current vertex to v := s.

— For each value j = 1,...,2% in increasing order:
*x Compute the edge label £ := (Gi(ho .. hi))j and set v :=Tg(v;{).
x If v =t ever holds, we halt and accept.

o If ¢ has not been found in any iteration above, we reject.
Figure 1: The pseudocode of the logspace algorithm for undirected s-t-connectivity.

Theorem 6. The algorithm in Figure 1 runs in logspace and solves the undirected connectivity
problem.

Proof. By Fact 4, the edge label ¢ can be computed in space O(|hg ... hg|), which is also the space
required to cycle through the outer loop. By the choice of expander graphs in Lemma 3, this is
bounded by O(log D + Zle logd;) < O(k) = O(log D + log N). Therefore, the algorithm runs in
space O(log N).

For the correctness, observe that the algorithm performs all pseudorandom walks starting at s
and following the edge labels that are given by the output of the INW-generator GG.. Therefore, by
Fact 5, the algorithm explores all neighbors of s in the derandomized power graph G*2" at least
once. By Lemma 3 and Lemma 2, all vertices in the same connected component as s (with respect
to) are neighbors of s in the derandomized power graph G2, Therefore, the above algorithm
accepts if and only if ¢ is in the same connected component of G as s. O

We remark that G with the given choice of the expander family is a random walk generator that
is known to be pseudorandom for consistently labeled graphs G. For not necessarily consistently
labeled graphs, pseudorandom generators with seed length O(log V) are not known. However, it
is known that finding such a pseudorandom generator would solve the full RL vs L question. RL
is the class of decision problems that that can be solved by a randomized algorithm in logarithmic
space, polynomial time, and with one-sided error, and L is the class of decision problems that can
be solved using deterministic logarithmic-space algorithms.

Theorem 7. If there is an e-pseudorandom walk generator that works for all directed regular
graphs, G : {0,1} — [D]* with £ = O(log(tD)) and t = poly(N), then RL = L.

References

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the 26th Annual Symposium on Theory of Computing,
STOC 1994, pages 356-364, 1994.

	Undirected Connectivity
	Algorithms for undirected connectivity

	Derandomized power graph
	Random steps in the derandomized power graph
	Edge labels of the derandomized power graph
	The INW-Generator
	Undirected Connectivity in logspace

