
CS 880: Pseudorandomness and Derandomization 3/13/2013

Lecture 15: Pseudorandomness for Logarithmic Space

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Gautam Prakriya

DRAFT

In the last lecture, we discussed a recursive construction of a pseudorandom generator that is
based on expanders: the INW generator. In this lecture we will show that the INW-generator
with a suitable instantiation of an expander family produces pseudorandomness for machines that
run in logarithmic space. We also introduce Nisan’s generator, which is a pseudorandom generator
that has a recursive structure that is slightly different from, but related to, the recursive structure
of the INW-generator, and which employs hash families instead of expanders. We begin with a
description of the class of algorithms that we want to produce pseudorandomness for.

1 Logspace Turing Machines

One way to model bounded space computation uses the Turing machine model and restricts the
length of the work tapes. A logspace machine M is a Turing machine with a read-only input tape
that contains the input x, a work tape of size O(log |x|) that corresponds to the memory, and a
write-only output tape. We usually equate access to randomness with the ability to flip a fair coin,
and we model this situation by allowing the machine to access an additional infinite read-once tape
that is initialized with bits which are sampled independently and uniformly at random. Notice that
the read-once restriction captures the fact that the outcome of a coin toss must be stored in the
configuration of the machine if it is to be used later in the computation. As usual, we denote the
random string used by the machine as ρ and its length by r.

For notational simplicity we will only talk about decision problems, though much of what we
discuss here is easily extended to more general settings. We further restrict ourselves to randomized
logspace machines with bounded, one-sided error, i.e., machines that may falsely reject a YES-
instance, but that never falsely accept a NO-instances. This corresponds to RL-machines as formally
defined below.

Definition 1. A logspace-machine M is an RL-machine for a language L if, for all x, we have

◦ if x ∈ L, then Prρ[M(x, ρ) accepts] ≥ 1/2,

◦ if x 6∈ L, then Prρ[M(x, ρ) accepts] ≤ 0, and

◦ M halts after at most poly(|x|) steps.

The third condition states that the worst-case running time of the algorithm should be polynomial.
Notice that any deterministic logspace machine that halts, halts in polynomially many steps. This
is not the case for a randomized machine, which is why we need the termination condition in the
definition. Consider for example the machine that loops until it finds a 1 in the random string ρ
and then accepts. With probability one, this machine halts and accepts, but if the random string
happens to be the infinite 0-string, it never halts, so the worst-case running time is unbounded.

1

s

0

1

A

1

0

2
s

x1 x2

Figure 1: Pictorial representation of a branching program of width w = 2S and accepting set A.
Every non-final vertex has two outgoing edges to the next layer, and in each layer, a particular
bit ρi of the random string is read.

1.1 Branching Programs

Branching Programs are the non-uniform analogues of bounded-space Turing machines. For our
purposes, we think of a branching program as a layered directed acyclic graph in which each layer
has the same number of nodes (see Figure 1). Every node except the ones in last layer have two
outgoing edges, labeled with 0 and 1, leading to nodes in the next layer. More formally, a branching
program B of length r and width w is a function B : [r − 1] × [w] × {0, 1} → [r] × [w] so that
B(i, ∗; ∗) = (i + 1, ∗) holds for all i < r, where [r] = {1, . . . , r}. Note that branching programs
essentially constitute a special case of finite state machines.

A branching program B can be viewed as a model of computation by picking a start node
s = (1, ∗) in the first layer and a set of accepting nodes A ⊆ {r} × [w] in the last layer. Then
a string ρ is accepted by B if there is a path from s to A such that the edge labels in the path
correspond to the bits in the string ρ.

An RL-machine M can be translated to a branching program B = BM,x as soon as the input x
is known: We let w be the total number of configurations that the logspace machine M can be in
when x is fixed. Since M has S = O(log |x|) space and O(1) internal states, the total number of
distinct configurations of M is upper bounded by O(2S) = poly(|x|). In each layer, the set of nodes
(i, ∗) corresponds to the set of configurations that M can be in right before step i. Let s correspond
to the initial configuration of M , that is, the configuration that M on input x is in right before it
reads the first random bit ρ1 ∈ {0, 1}. Let Cb be the configuration of M right before reading ρ2

in case ρ1 = b. Then we define B(s, ρ1) = (2, Cρ1). In general, every time a new random-bit is
read and depending on the value of the bit, the machine M moves to a new configuration, and this
transition is modeled by B. Notice that we only model changes in the configuration of the machine
when a random bit is read; the deterministic part of the computation and its dependency on the
actual input x is hidden in the non-uniformity of the model. The length of the branching program
is equal to the number of random bits r read by the machine and therefore upper bounded by the
running time poly(|x|) of M . Finally, the accepting states A in the final layer correspond to the
accepting configurations of M .

Let us introduce some notation to talk about specific runs of B when the original input is fixed

2

and the randomness input is given. On (randomness) input ρ ∈ {0, 1}r′ , we overload our notation
of B to a function B : [r− 1]× [w]× {0, 1}r′ → [r]× [w] defined recursively as B(i, j; ρ1ρ2 . . . ρ`) =
B(B(i, j; ρ1); ρ2 . . . ρ`). Finally, we may also write B : {0, 1}r → {0, 1} for the function computed
by the branching program B, that is,

B(ρ)
.
=

{
1 if B(s; ρ) ∈ A, and

0 otherwise .

Since M was an RL-machine for a language L, the program B = BM,x satisfies Prρ(B(ρ) = 1) = 0
if x 6∈ L, and it satisfies Prρ(B(ρ) = 1) ≥ 1/2 if x ∈ L. In either case, we expressed the acceptance
probability of M on input x in terms of the probability that B outputs one. Since B can be seen
as a directed graph with out-degree two, the latter is equal to the probability that a random walk
in B, started at s, will end in A after r steps.

2 Pseudorandomness for Branching Programs

In this section we prove that the INW-generator instantiated with a suitable expander family fools
read-once branching programs. After that, we introduce another recursive construction of a PRG
for space bounded computation known as Nisan’s generator.

For convenience, let us discuss what it means to be pseudorandom for branching programs. We
say that a generator G : {0, 1}` → {0, 1}r is ε-pseudorandom for branching programs of length r
and width w if, for all such branching programs B, we have∣∣∣∣ Pr

ρ∼Ur

(
B(ρ) = 1

)
− Pr
ρ∼G(U`)

(
B(ρ) = 1

)∣∣∣∣ ≤ ε . (1)

2.1 INW-Generator

We recall the definition of the INW-generator, Definition 1 from Lecture 14, but we specialize
the definition to the case in which the output of the generator is a binary string; this is what
we ultimately need as the input of the branching program. There are several ways of doing this
specialization, and we choose to simply restrict the initial symbol set [D] to be binary.

Definition 2 (Impagliazzo–Nisan–Wigderson Generator (binary version)).
Let H1, H2, . . . be a sequence of directed outregular graphs such that Hi has out-degree di, vertex set
{0, 1}×[d1]×· · ·×[di−1] and neighbor function ΓHi : V (Hi)×[di]→ V (Hi). Then the INW-generator

is the family of functions Gi : {0, 1} × [d1]× · · · × [di]→ {0, 1}2
i

such that

G0(h0)
.
= h0

Gi+1(h0 . . . hi+1)
.
= Gi

(
h0 . . . hi

)
◦Gi

(
ΓHi+1(h0 . . . hi;hi+1)

)
,

where h0 ∈ [D] and hj ∈ [dj] for all j > 0.

We let H1, H2, . . . be a family regular expanders of degree at most d each and with some sufficiently
good spectral expansion at most λ to be chosen later. We have seen before that d ∼ 1/λ2 can be
achieved. Unfortunately, it is technically tricky to use the fully explicit family that we constructed

3

based on the replacement product, because we have to worry about the exact degrees and number
of vertices that we need in the construction of the INW-generator. We ignore these issues here and
assure the reader that these difficulties can be overcome.

Note that the first d − 1 graphs above, that is, H1, . . . ,Hd−1, will be chosen to be complete
graphs, that is, H1 is the complete graph on two vertices and all self-loops, and Hd−1 is the complete
graph with d vertices and all self-loops. Only after that point will we employ a d-regular family of
expanders with second-largest eigenvalue at most λ.

To transform the INW-generator Gk to a generator Gk : {0, 1}` → {0, 1}r that takes a binary
input, we represent the elements of {0, 1}× [d1]× . . . [dk] in binary, which can be done with strings
of length `

.
= 1 +

∑k
i=1 log di ≤ k · log d. Since r = 2k and d ∼ 1/λ2, we achieve a seed length of

` ∼ log r · log(1/λ). To get the error down to ε > 0 for general branching programs, we will require
λ = poly

(
ε
rw

)
in the analysis below, for which reason the seed length of the INW-generator is

` ∼ log r ·
(

log r + logw + log(1/ε)
)
.

More succinctly, in the most interesting case where the width w is polynomial in r and the error ε
is a constant, say 1/2, the seed length simplifies to ` ∼ log2 r.

We now prove that the INW-generator is pseudorandom for branching programs and analyze
the error. Unfortunately, we don’t know how to analyze the error using the derandomized squaring
of expanders as we did for undirected connectivity in Lecture 14. The analysis below appears to
be different, and relies directly on the quasirandomness property of expanders that we proved in
the expander mixing lemma (Lemma ?? of Lecture 10).

Lemma 1. For all k ∈ N, the INW-generator Gk instantiated with expanders of second-largest
eigenvalue at most λ is (3k · w · λ)-pseudorandom for branching programs of length r = 2k and
width w.

Proof. Let B be a branching program length r = 2k and width w. We need to prove (1). To
this end, we will actually prove a stronger condition so that we can use induction. The stronger
condition is that the statistical distance between the distributions of the state that we reach when
reading a uniform input and the one when reading a pseudorandom input is small. Formally, the
claim is that, for all i ∈ N and all branching programs B of length 2i, the following holds for all
states s ∈ {1} × [w]:

dstat

(
B
(
s;U2i

)
, B
(
s;Gi(U)

))
≤ εi

.
= 3iwλ . (2)

Since we want to avoid specifying the seed length of Gi here, we let the distribution U be uniform
on all valid inputs of Gi. Recall that B(s; ρ) denotes the state in [r] × [w] that we reach when
starting B at s and reading ρ; thus, B(s;D) is a distribution on the states that we reach when the
randomness comes from a distribution D.

To see that (2) implies (1), note that the statistical distance in (2) is by definition equal to the
maximum of the left-hand side of (1) taken over all sets A ⊆ [r]× [w].

The proof of (2) proceeds by induction on i. For i = 0, we have r = 1 and both Ur and
Gi(U) are just a single uniform bit; so the distributions are the same and the statistical distance
in (2) is equal to zero. For the induction step i → i + 1, we essentially split the computation of
the branching program in the middle and use the induction hypothesis on both parts. We use the

4

triangle inequality to show an upper bound on the error of the entire execution in terms of the
errors of the two parts.

So first consider the input to be truly random. Then we can rewrite the output distribution
under truly random input as B

(
s;U2i+1

)
= B

(
B(s;U2i);U2i

)
= B

(
MU ;U2i

)
where MU is the

random variable B(s;U2i) that holds the state we reach in the middle layer after reading the first
half of the truly random input, and B

(
MU ;U2i

)
is the state that we reach after reading the second

half of the truly random input provided that we started at a state sampled from MU .
Because of the recursive structure of the INW-generator, we can do a similar decomposition for

the pseudorandom distribution. Namely, we split the uniform input distribution U for Gi+1 into
two parts X and Y , so that X corresponds to the uniform distribution on the edge labels h0 . . . hi
and Y corresponds to the uniform distribution on the edge labels hi+1. Then we can write

Gi+1(XY) = Gi(X) ◦Gi
(
Γ(X;Y)

)
, (3)

where Γ = ΓHi+1 is the function from the definition of the INW-generator. As above, we can then
write

B
(
s;Gi+1(U)

)
= B

(
B(s;Gi(X));Gi(Γ(X;Y))

)
= B

(
MP ;Gi(Γ(X;Y))

)
,

where MP = B(s;Gi(X)) is the random variable that holds the state that we reach in the middle
layer after reading a random string sampled from the pseudorandom distribution Gi(X).

Our goal is to show 2, namely that B
(
s;U2i+1

)
and B

(
s;Gi+1(U)

)
are close in statistical dis-

tance. We are now in position to use the triangle inequality to break up the computation in the
middle:

dstat

(
B
(
s;U2i+1

)
, B
(
s;Gi+1(U)

))
= dstat

(
B
(
MU ;U2i

)
, B
(
MP ;Gi(Γ(X;Y))

))
≤ dstat

(
B
(
MU ;U2i

)
, B
(
MP ;U2i

))
(4)

+ dstat

(
B
(
MP ;U2i

)
, B
(
MP ;Gi(U)

))
(5)

+ dstat

(
B
(
MP ;Gi(U)

)
, B
(
MP ;Gi(Γ(X;Y))

))
. (6)

In the following claims, we will use the induction hypothesis and the expansion properties to bound
this sum by εi + εi +w · λ; by the definition in (2), this is equal to 2 · 3iwλ+wλ ≤ 3i+1wλ = εi+1,
which then concludes the induction step. Let us now bound the three terms separately.

To bound the first term of the sum, we use the induction hypothesis on the first half of the
branching program.

Claim. (4) ≤ εi .

Proof. We get dstat(MU ,MP) ≤ εi since MU and MP are the output distributions of a branching
program of length 2i under uniform input U2i and under pseudorandom input sampled from Gi(U),
respectively. Furthermore, the process F : S 7→ F (S)

.
= B(S;U2i) is a (randomized) procedure

applied to the (outcome of) the random variable S. It is a general fact about the statistical
distance that no process can increase the statistical distance between two random variables, that
is, (4) = dstat(F (MU), F (MP)) ≤ dstat(MU ,MP) holds, which establishes the lemma. �

5

To bound the second term of the sum, we use the induction hypothesis on the second half of
the branching program.

Claim. (5) ≤ εi .

Proof. By the triangle inequality, we get

(5) ≤ Em∼MP

[
dstat

(
B(m;U2i), B(m;Gi(U))

)]
≤ max

m∈middle layer
dstat

(
B(s;U2i), B(s;Gi(U))

)
.

The second half of B started at any vertex m from the middle layer of B is a branching program
of length 2i. Hence the induction hypothesis applies and we get an upper bound of εi. �

The following claim is the crux of the INW-generator and the only part of the proof that uses the
facts that the branching program has width at most w and that the function Γ in the definition of
the INW-generator corresponds to the neighbor function in an expander graph with second-largest
eigenvalue at most λ.

Claim. (6) ≤ w · λ .

Proof. We will again upper bound the statistical distance by the worst-case state m that we might
reach in the middle layer as we did in the proof of the previous claim. However, there is a com-
plication since the distribution X may change if we condition on reaching a certain state m in the
middle layer. This is because the distributions MP and Gi(Γ(X;Y)) are not independent since MP

and X may be correlated. However, since MP is a distribution on at most w states, the amount
of dependence between the two distributions is actually fairly small. Since Y and MP are fully
independent, this limited dependence allows us to use Y to reshuffle X enough for the second half
of the branching program not to notice any significant correlation of its input to the input that the
first half received.

Formally, we define the random variable Xm
.
= (X|MP = m) for each possible outcome of the

middle state m. That is, for all x in the support of X, we define Pr(Xm = x)
.
= Pr(X = x|MP = m).

Note that, because X was uniform, the new distribution Xm is uniform on its support supp(Xm).
We use the 1-norm characterization of the statistical distance:

(6) =
1

2

∑
f∈final layer

∣∣∣Pr
(
B(MP ;Gi(U)) = f

)
− Pr

(
B(MP ;Gi(Γ(X;Y))) = f

)∣∣∣
=

1

2

∑
f∈final layer

∣∣∣Em∼MP
Pr
(
B(m;Gi(U)) = f

)
− Em∼MP

Pr
(
B(m;Gi(Γ(Xm;Y))) = f

)∣∣∣
≤ w · max

m∈middle layer
f∈final layer

∣∣∣Pr
(
B(m;Gi(U)) = f

)
− Pr

(
B(m;Gi(Γ(Xm;Y))) = f

)∣∣∣ .
The inequality above follows from the triangle inequality and the fact that the final layer has at
most w states f . It remains to bound the absolute value for all m and f , which we will do using
the quasirandomness property of the expander Hi+1, whose neighbor function is Γ = ΓHi+1 . Recall
that the vertex set of Hi+1 is the support of X, and the labels used on the edges is the support of Y .
Now we define the sets S

.
= supp(Xm) = {x | B(s;Gi(x)) = m} and T

.
= {x′ | B(m;Gi(x

′)) = f}.
Note that Pr

(
B(m;Gi(U)) = f

)
= |S|·|T |
|V (Hi+1)|2 and Pr

(
B(m;Gi(Γ(Xm; y))) = f

)
= |E(S,T)|
|E(Hi+1)| . Since

6

the second-largest eigenvalue of Hi+1 is at most λ, the expander mixing lemma (Lemma ?? of
Lecture 10) implies

(6) ≤ w ·max
m,f

∣∣∣∣ |S| · |T |
|V (Hi+1)|2

− |E(S, T)|
|E(Hi+1)|

∣∣∣∣ ≤ w · λ . �

We completed the analysis of the pseudorandomness of the INW-generator, and therefore the proof
of Lemma 1. �

We already stated the resulting seed length of the generator, but for reference, we restate it as
a theorem.

Theorem 2 ([INW94]). For all r, w ∈ N and ε > 0, the INW-generator Glog r : {0, 1}` → {0, 1}r
with seed length

` ∼ log r ·
(

log r + logw + log(1/ε)
)

is ε-pseudorandom for branching programs of width w and length r. Furthermore, the generator
can be computed in space O(`).

Proof. Let H1, H2, . . . be an expander family with λ < ε/(r2w) and let k = log r. Then, by
Lemma 1, the INW-generatorGk is ε-pseudorandom for branching programs of length r and width w
since 3kwλ ≤ ε. Furthermore, the seed length is ` ≤ k·log d, where d is an upper bound on the degree
of the expanders. Since d ∼ 1/λ2 can be achieved, we have ` ≤ C ·

(
log r(log r+ logw+ log(1/ε))

)
for some absolute constant C > 0 independent from r, w, and ε.

Furthermore, Gk can be computed in space O(`) because of Fact 4 in Lecture 14 and the fact
that the expander family is fully explicit. �

Finally, we consider the consequences of this theorem for the derandomization of random-
ized logspace RL. Recall that L denotes the complexity class for deterministic logspace, and we
write L2 = DSpace(log2 n) for the class of problems that can be decided by machines that use
space O(log2 n).

Corollary 3. RL ⊆ L2.

Proof. Let L ∈ RL and let M be an RL-machine that decides L, and let r = poly(n) be an upper
bound on the number of random bits used by M on an input of length n and w = poly(n) is an
upper bound on the size of M ’s configuration graph. We construct an L2-machine M ′ for L. On
input x of length n, we will use the INW-generator G from Lemma 1 with ε = 1/3. Then M ′ works
as follows:

1. Cycle through all seeds σ ∈ {0, 1}`, and

(a) Simulate M on input x

(b) Keep track of the position j ∈ [r] in M ’s random tape

(c) Whenever M requests a random bit, provide ρj
.
= (G(σ))j and increment j.

2. M ′ accepts if and only if at least one run of M above accepts.

7

This algorithm uses space Θ(log2 n) because ` ∼ log2 n. For the correctness of the algorithm, let x
be some input. If x 6∈ L, then Prρ(M(x; ρ) = 1) = 0 and hence no run of M can accept. On the
other hand, if x ∈ L, then Prρ(M(x; ρ) = 1) ≥ 1/2. For the analysis in this case, let B = BM,x

be the corresponding branching program of width w and length r so that M(x; ρ) = B(ρ) for
all ρ. By Lemma 1, we have

∣∣Pr(B(Ur) = 1) − Pr(B(G(U`)) = 1)
∣∣ ≤ ε = 1/3, and therefore,

Pr(B(G(U)) = 1) = Prσ(M(x;G(σ)) = 1) ≥ 1
2 −

1
3 > 0. This implies that the algorithm M ′ above

finds at least one seed σ that leads to acceptance. �

Note that Corollary 3 can be proved without using pseudorandom generators. In fact, RL ⊆ L2 as
well as the more general result NL ⊆ L2 about non-deterministic logspace were known long before
and essentially work in the same manner as the repeated squaring of matrices that we discussed
in the beginning of Lecture 14. However the proof above provides a “black-box derandomization”
in that the algorithm can be seen as a black box and only the randomness is chosen from a
pseudorandom distribution with small support. This is structurally more elegant, and many people
believe that a possible proof of RL = L would make use of pseudorandom generators. We will see
in Lecture 16 that a pseudorandom generator for RL can indeed be used to prove RL ⊆ L1.5, which
constitutes a strict improvement on Corollary 3.

2.2 Nisan’s generator

We now have a look at Nisan’s generator, a different pseudorandom generator for branching pro-
grams. It came historically before the INW-generator and is related to it, but it is based on
pairwise independent hash functions instead of expanders. Recall from Definition 2 in Lecture 5
that a family H of pairwise uniform hash functions h : {0, 1}m → {0, 1}m is a family that satisfies
Prh∈H(h(x) = x′ ∧ h(y) = y′) = 2−2m for all x, y, x, y′ ∈ {0, 1}m. We also noted in Lecture 5 that
the family H = {ha,b} of all linear functions ha,b(x) = a ·x+ b over F2m is such a family. Once hash
functions h1, . . . , hi from the family are chosen, Nisan’s generator is defined as follows.

Definition 3. Let m be a positive integer and let h1, . . . , hi : {0, 1}m → {0, 1}m be a sequence of

(hash) functions. Then we define the Nisan’s generator Gh1...hi : {0, 1}m → ({0, 1}m)2i as follows
for all seeds σ ∈ {0, 1}m:

G∅(σ)
.
= σ

Gh1..hi(σ)
.
= Gh1..hi−1

(σ) ◦Gh1..hi−1
(hi(σ))

For example, if we only have a single hash function h, this yields Gh(σ) = σ ◦ h(σ). The in-
terpretation in the case of branching programs is that we first divide the branching program into
blocks of length m each. Then a random walk of length 2m in the branching program is specified
by the assignment σ1 ◦ σ2 to the first two blocks. In a uniform walk, these two assignments are
independent and uniform; however, in a pseudorandom walk, the first assignment σ1 is chosen uni-
formly at random, but the second step is taken to be σ2 = h(σ1) in Nisan’s generator. The intuition
is that, if h was drawn from a family of pairwise uniform hash functions, then the pseudorandom
string looks random to any branching program.

Let us point out why we need to choose m ≥ Ω(logw) where w is the width of the branching
program: If logw is larger than 6m, then there is a simple branching program that can detect
whether its input is an output of Nisan’s generator. For simplicity, we consider the case of three

8

hash functions h1, h2, h3; here we have

Gh1,h2,h3(σ) = σ ◦ h1(σ) ◦ h2(σ) ◦ h2(h1(σ)) ◦ h3(σ) ◦ h3(h1(σ)) ◦ h3(h2(σ)) ◦ h3(h2(h1(σ))) .

Since logw ≥ 6m, the branching program can hold six blocks entirely in its memory and make
arbitrary decisions based on their value. Let a, b, c, d, e, f, g, h be the eight blocks above. Then the
linear equations e = h3(a) and f = h3(b) can be used to determine the linear function h3 since a
and b are different with high probability. The branching program will then claim that the sequence
is not random if g = h3(c) holds. Thus, in order for Nisan’s generator to give something useful, the
block length m must be Ω(logw).

Nisan’s generator is ε-pseudorandom for length r and width w branching programs in the
following sense: When h1, . . . , hk for k = log r and σ ∈ {0, 1}m for m = Θ(log r + logw + log(1/ε))
are drawn uniformly and independently from H and Um, respectively, then replacing the branching
programs’ uniform random input with the output of Nisan’s generator incurs an error of at most ε
in statistical distance. This result suffices to prove Corollary 3, but we will actually need a stronger
version in Lecture 16 when we prove RL ⊆ L1.5.

A careful analysis of Nisan’s generator yields that we can actually divide the seed into two
parts: In a first phase, the “outer” seed h1, . . . , hk is chosen uniformly at random. Then the
function defined in Definition 3 is a procedure that stretches an “inner” seed σ of m ∼ log r bits
to r ∼ m · 2k pseudorandom bits; in order to compute it, only O(m + k) = O(log r) additional
work space is required (where we do not count the work space required to store h1, . . . , hk). The
stronger pseudorandomness statement is that, for all branching programs B, we have a very high
probability that a uniformly sampled outer seed will instantiate the generator Gh1,...,hk such that
it is ε-pseudorandom for B. We make this formal below.

Theorem 4 ([Nis92]). Let B be any branching program of length r = 2k and width w and let
ε > 0. Then there is an m ∼ log r + logw + log(1/ε) such that

Pr
h1,...,hk∼H

[
Gh1,...,hk is ε-pseudorandom for B

]
≤ 1

poly(r)
.

Moreover, the following slightly stronger statement is true as well:

Pr
h1,...,hk∼H

[
dstat

(
B(s;Gh1,...,hk(Um)) , B(s;U2k)

)
≤ ε

]
≤ 1

poly(r)
. (7)

Recall that B(s;D) refers to the distribution on the states that B reaches when its input is sampled
from D. Furthermore, let us remark that Gh1,...,hk outputs m2k bits, but we actually only use 2k

of them; this is an insignificant technicality.
We leave it as an exercise for the reader to prove Theorem 4, it follows along the lines of the

proof of Lemma 1; the only important difference is the bound on the corresponding third term (6).
Instead of the expander mixing lemma, we use a mixing lemma for pairwise uniform hash functions.
This is also the step that we get the concentration result from. We state this lemma and provide
a proof sketch.

Lemma 5. Let m be a positive integer, and let H be a family of pairwise uniform hash functions
h : {0, 1}m → {0, 1}m. Furthermore, let S, T ⊆ {0, 1}m. Then we have

Pr
h∼H

[∣∣∣∣ |S||T |22m
− |{s ∈ S | h(s) ∈ T}|

2m

∣∣∣∣ < ε

]
> 1− 1/(ε2 · 2m) .

9

Proof. Let X be the random variable |{s ∈ S|h(s) ∈ T}|/2m. We now compute its expected value
using the 0/1-indicator variable Xs = I[h(s) ∈ T]:

Eh∼H[X] = Eh∼H
[∑
s∈S

Xs/2
m
]

=
∑
s∈S

Eh∼H[Xs]/2
m =

∑
s∈S
|T |/2m = |S| · |T |/22m .

To prove the theorem, we need to prove concentration. Below, we first apply Chebyshev’s inequality
(Proposition 1 in Lecture 5), which requires us to bound the variance of X. Since X =

∑
s∈S Xs/2

m

holds and the Xs are pairwise independent, we can apply Proposition 3 in Lecture 5. We get:

Pr
h∼H

[∣∣E[X]−X
∣∣ ≥ ε] ≤ Var[X]

ε2
=

∑
s∈S Var[Xs/2

m]

ε2
=

∑
s∈S Var[Xs]/2

2m

ε2

≤
∑

s∈S E[Xs]/2
2m

ε2
=

E[X]/2m

ε2
≤ 1

ε22m
. �

References

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the 26th Annual Symposium on Theory of Computing,
STOC 1994, pages 356–364, 1994.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

10

	Logspace Turing Machines
	Branching Programs

	Pseudorandomness for Branching Programs
	INW-Generator
	Nisan's generator

