CS 880: Pseudorandomness and Derandomization 3/18/2013

Lecture 16: RL is in L1

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Lubos Krcal

DRAFT

In Lecture 15, we have seen two pseudorandom generators that use a seed of length log? n and
produce pseudorandomness for RL-machines. This time, we will see that every randomized logspace
machine with bounded error can be simulated by a deterministic machine that uses log'® n. All of
these results can be easily transferred to BPL-machines, where the error can be two-sided.

1 The idea

Recall that Nisan’s generator consisted of two phases: In the first phase, a logarithmic number £ ~
log n of hash functions is chosen; to sample a single hash function, a logarithmic number of random
bits are required, and thus, the outer seed consists of O(klogn) = O(log?n) random bits. In the
second phase, an inner seed of logarithmic length m ~ logn chosen and the output is computed
using at most a logarithmic amount of additional work space. It is this discrepancy between the
logarithmic space requirement of the second phase and the quadratically logarithmic length of the
outer seed length that we will be able to trade off with each other to get an overall seed length
of O(log'® n).

A natural idea for decreasing the seed length of the outer seed is to simply choose fewer hash
functions and reuse them a few times. In particular, we want to choose &k << logn so that
klogn << logZn. We will see below that we can in fact do so if we are willing to pay for it with an
increased space requirement of the inner phase. In the construction and analysis below, the space
requirement for the inner phase will eventually go up to 10%" -logn. The two quantities klogn
and log? n/k embody the trade off mentioned above, and they are simultaneously minimized if
k ~ y/logn, which is how the bound of log!® n comes about.

We will first attempt to pick a single hash function, fail, and successively try to make this idea
work.

2 Attempt 1: Pick only a single hash function

Naively, we might pick a single hash function h; : {0,1}™ — {0, 1} from the distribution X and
set hg = -+ = hy, = hy. This is not so unreasonable since the concentration result for Nisan’s
generator, Theorem 4 in Lecture 15, implies that Gy, : {0,1}™ — {0, 1}?™ is with high probability
a pseudorandom walk generator for a given branching program B: That is, it only requires m bits
of seed but produces randomness that B cannot distinguish from 2m uniform bits. At least on the
surface, this is similar to the derandomized squaring based on expander graphs that we discussed
in Lecture 14. The idea to simply apply the same derandomized squaring k times to get r < 2Fm
pseudorandom bits out then directly leads to our attempt to choose all hash functions to be equal.

More formally, we define the derandomized square of a branching program B : [r — 1] x [w] X
{0,1}™ — [r] x [w] with respect to a function h : {0,1}" — {0,1}™ to be the branching program
By, : [r—=2]x[w]x{0,1}™ — [r]x [w] where By,(s;0) = B(s; G(0)) holds for all states s € [r—2]x [w].
Since r = 2% and G}, (0) is 2m bits long, we can drop all states s = (4, *) for odd numbers 7; thus,
the length of the derandomized square is r/2, half of the length of B, and its width is again at
most w since the computation of G, (o) is hidden in the non-uniformity of the branching program
model (this is why we make the branching program read a block of length m in each step, which
we can do without loss of generality since any pseudorandom generator for this model will also be
pseudorandom for the usual model with block length 1).

An immediate consequence of Nisan’s pseudorandomness guarantee is that the derandomized
square of a branching program has a similar behavior as the original, which we formalize below.

Lemma 1. For all k, w, and € > 0, there is an m ~ logr + logw + log(1/¢€) such that, for every
branching program B : [r — 1] x [w] x {0,1}™ — [r] x [w] of length r = 2¥ and width w and for all
states s of B, we have

1

~ poly(r) W

JPr {dstat (Bh(s;Um) , B(s; UQm)) < e} >1

Note that the distributions in (1) are over states two layers after s.

If we iterate the derandomized square process with hash functions hi, ..., h; sampled from H
independently, Lemma 1 implies that By, p, ., is ke-close to the original branching program,
except with probability at most k/ poly(r) = 1/ poly(r). Another reason why this is true is the fact
that By, n,(s;0) = B(s; G, n,(0)) holds, and Nisan’s generator has the stated property.

In light of Lemma 1, it is tempting to use the same hash function h; = --- = hp. However,
it is not hard to see that Nisan’s generator Gy, . p, fails to be pseudorandom in this case since
there exists a simple distinguisher D that can tell the generator’s output apart from a uniform
distribution: For example, if k = 2, we have Gy, 4, (0) = 0ohi(c)ohi(o)ohi(hi(0)). A branching
program D of width two can then store the (m + 1)st bit and compare it to the (2m + 1)st bit.
If they are equal, the branching program will guess that the distribution is not uniform. Indeed,
in the uniform case the bits are equal with probability % whereas they are always equal under the
output distribution of Gj, p,. In other words, we have dgat(Dp, p, (s;U), D(s;U)) > 1/2 for all
functions h; when s is the start state, and (1) cannot hold. Therefore, we have to do something
slightly more clever if we are to reuse the same hash function.

2.1 Attempt 2: Decoupling by Rounding

We have seen in the last section that we cannot simply re-use the same hash function in Nisan’s
generator. Formally, the reason that Lemma 1 fails to give a guarantee for the branching program
B’ = By, after the first iteration is that the second hash function hg is assumed to be independent
if we were to reapply Lemma 1, but we don’t do that since we chose it to be equal to hy. However,
if we can start from By, and modify it a little bit to get to a related B’ that is independent from hy,
then we can pick hy such that By, is a good approximation for B and simultaneously B;u is a good
approximation for B’, which would enable us to hold on to the idea of choosing the same hash
function in each derandomized squaring step. This “modification” of Bj, will no longer work in
a black-box way, but recall that we have the relaxed goal to derandomize B in as little space as
possible in a possibly non-black-box way. This means that we are given B as input to a Turing

machine and we are allowed to transform it arbitrarily; we first transform it into Bj, and then
decouple it from h; to obtain B’.

To see what good candidates for this “decoupled” B’ could be, note that By, is a good approx-
imation for B, so B’ should also be something close to B that is, however, independent from h;.
We cannot choose B itself since it is not clear how to get from Bj, back to B, and in fact, some
information about B may have gotten lost in Bp,. To get a clue, let us look back at (1) and only
consider the good case for hy. Then the l-norm interpretation of the statistical distance states
that > cext even layer [PT(Br(s;U) = 1) — Pr(B(s;U) = t)| < 2e holds for all states s in an even
layer. This implies that Pr(By(s;U) = t) and Pr(B(s;U) = t) are equal up to an additive error of
at most 2e. In particular, it seems very likely that the binary expansions of these two numbers
coincide in their first M = log(1/¢)/100 most significant bits, and that the only part of the proba-
bilities that depends on h is in the lower-order bits. It is then natural to cut the lower-order bits
off, which simply corresponds to rounding down to an integer multiple of 2. Thus, we can define
B’ = | By p such that the probabilities are rounded down to the first M positions. The hope is
that the probabilities and B’ itself will be independent from h. Moreover, when By, is given, a
description of B’ can be computed in space O(m + logw + logr +log(1/€)). We leave this fact as
an exercise.

Exercise 1. There is a deterministic algorithm that, when given a branching program B of length r,
block length b, and width w, and given a number € > 0 so that M = log(1/€)/100 < m, computes a
branching program | B|yr of length r, block length m, and width w that satisfies

Pr([Ble(s;Um) = t) = [Pr(B(s;Up) = t)|ar (2)

for all states s in the i-th layer and all states t in the (i + 1)-st layer. Moreover, the algorithm uses
space O(m~+b+log(wr/e)) and the program | B|y depends only on the right-hand side of (2) (and
not on the structure of B).

The rounded program approximates the original in the following sense: For all states s,

dstat(LBjM(s; Un), B(s; Ub)> <w2™ = O(ew). (3)

So our second attempt for obtaining a derandomization of B proceeds as follows: We are given B
of length r = 2¥ and with block length m as input, and we pick a single hash function h ~ #. Then
we compute the branching program Py defined iteratively as follows:

Py,=1B
Pit1= [Bp]um -
The block length of all these programs is m ~ logr, and the length of P; is /2!. Therefore, Py
has length one and can be fully derandomized by brute force. By Lemma 1, we know that one step

in By, is e-close to two steps in B. So we can compare the above sequence to the “truly random”
sequence:

T, = B
Tit1 = | B* |-

In this sequence, the block length of B? is 2m, but the rounding cuts the block length back to m
and we loose some precision in the lower-order bits. In the truly random sequence, we iteratively
apply Exercise 1 and get that Ty, and B are O(kwe)-close in statistical distance.

Recall that our goal is to apply Lemma 1 once to find an h that bounds the distance between
P; and T; for all i € [k] simultaneously. This would indeed be possible by a simple application of
the union bound if the rounding made the P;’s independent from h. We have not quite achieved
that goal yet: Consider the case in which B transitions from s to a state ¢ two layers after s with
probability exactly p = 7-27™. Then Lemma 1 guarantees that, for most choices of h, the program
By, transitions from s to ¢ with probability 2e-close to p; this probability could be < p or > p. In
the former case, P; would round this probability down to 6 - 2™ and in the latter case it would
get rounded down to 7-27M. Note that M was chosen so that e = 27199M 5o only these two cases
can occur since the error is much smaller than the rounding intervals. The problem is that the
program P; still depends on h since we cannot rule out that some h with lead to the larger number
and some will lead to the smaller one.

2.2 Attempt 3: Decoupling by Rounding + Random Translation

To circumvent the problem that the branching program may depend on h after the rounding step,
note that there are only few problematic values for the probability p from above: The problematic
cases of p occur in the 2e-neighborhood around integer multiples of 2. In each interval [i2= (i+
1)2=M], the total measure of these problematic boundary cases is 2¢/2~M = 27100M+1+M < 9-98M
by our choice of M = log(1/€)/100. By choosing ¢ = 1/poly(r), we can make this measure
polynomially small in r.

In light of the small measure of problematic cases, we can just add some random noise to the
transition probabilities. The noise will be such that it is unlikely that we will be in the problematic
region, and so that the error does not go up significantly. The details can be worked out in the
following exercise.

Exercise 2. There is a deterministic algorithm that, when given a branching program B of length r,
block length m, and width w, and given numbers e > 0 and § € [0,1] N 2710M . N 5o that M =
log(1/€)/100 < m, computes a branching program |B]yr of length r, block length m, and width w
that satisfies

Pr(|B — 8c(s: Un) = t) = [Pr(B(s;Up) = 1) — 8 s (4)

for all states s in the i-th layer and all states t in the (i +1)-st layer. Moreover, the algorithm uses
space O(m + b+ log(wr/e)) and the program | B — ¢ |apr depends only on the right-hand side of (4)
(and not on the structure of B).

The rounded program approzimates the original in the following sense: For all states s,

ot (LB = 0)a1(53 Un), B(s:Up)) < w(27™ +8) = O((e + 0)w) (5)

Finally, if h is a good hash function for B in the sense of (1), we want to have that |Bj, — 4] is
the same regardless of the choice of which good hash function we chose. Note that there are at
most r - w = poly(r) transition probabilities between subsequent layers of By, and therefore, the
probability that there exists a transition probability that gets shifted into a bad region by picking
0 uniformly at random is at most 1/ poly(r), where the degree of the polynomial can be made as
large as needed to apply the union bound over all transition probabilities.

We are done with our third attempt, and this algorithm actually works. Let’s analyze the
space requirement: The space for a single iteration is ~ logr plus the space required to store the
hash function h, which is logm ~ log(1/e) ~ logr. So over all k iterations, we require space
k -logr ~ log? r, which is no improvement over Nisan’s generator.

2.3 Final algorithm

To reduce the space requirements further, we need to decrease the number of iterations and rounding
steps required, and we will do so by increasing the number of hash functions used. In particular,
our final algorithm proceeds as follows:

1. The input is a branching program B of length r = 2¥ and width w.
2. We set € = 1/ poly(r), m = O(log(1/¢)), and M = log(1/¢)/100.

3. We sample vk hash functions hy, ..., h g~ H.

4. We set Py = B.

5. For each i from 0 to vk — 1, we sample §; uniformly at random and compute

P = L(R)hl,hz,...,h@ - 5¢JM7
via Exercise 2.
6. We cycle through all seeds of length m to compute the acceptance probability of P .

Note that Py has block length 1 initially, and we silently pad it to block length m without loss of
generality. The successive application of Lemma 1 with v/k independent hash function decreases the
length of the program by a factor of 2@, so all programs P; have block length m and length r/ 2iVk,
Importantly, computing this composition and applying Exercise 2 only requires space ~ logr since
the hash functions are fixed globally. In the end, P, ; has length one, and cycling through all seeds

of length m can be done in space O(logr). Thus, we need space m - Vk to sample the hash functions
once, and we need space logr - Vk to iteratively compute P k- By the choice of parameters, this

works out to be ~ log!dr.

Theorem 2 ([SZ99]). RL € L.

References

[SZ99] Michael Saks and Shiyu Zhou. BPgSPACE(S) C DSPACE(S?/?). Journal of Computer and
System Sciences, 58(2):376-403, 1999.

	The idea
	Attempt 1: Pick only a single hash function
	Attempt 2: Decoupling by Rounding
	Attempt 3: Decoupling by Rounding + Random Translation
	Final algorithm

